DOI QR코드

DOI QR Code

Molecular Identification and Technological Properties of Acetic Acid Bacteria Isolated from Malatya Apricot and Home-Made Fruit Vinegars

  • Buyukduman, Eda (Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University) ;
  • Kirtil, Hatice Ebrar (Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University) ;
  • Metin, Banu (Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University)
  • Received : 2021.09.30
  • Accepted : 2021.10.12
  • Published : 2022.03.28

Abstract

Acetic acid bacteria (AAB) are versatile organisms involved in the production of variety of fermented foods, such as vinegar and kombucha, and products of biotechnological relevance, such as bacterial cellulose. In the present study, Malatya apricot, a variety with protected designation of origin (PDO), and vinegar samples produced using various fruits were used to isolate AAB. The 19 AAB isolates obtained were typed using (GTG)5 fingerprinting, and the ones selected were identified by sequencing either 16S rDNA alone or in combination with 16S-23S rRNA internal transcribed spacer region or ligA gene. While all apricot isolates (n = 10) were Gluconobacter cerinus, vinegar isolates (n = 9) were composed of Komagataeibacter saccharivorans, Acetobacter syzygii, and possible two new species of AAB, Komagataeibacter sp., and Gluconobacter sp. (GTG)5 fingerprinting showed the presence of several genotypes of G. cerinus in the apricot samples. Screening for some technologically relevant properties, including thermotolerance, ethanol tolerance, and cellulose production capability, showed that all Komagataeibacter and some Gluconobacter isolates could tolerate the temperature of 35℃, and that vinegar isolates could tolerate up to 8% ethanol. One isolate, Komagataeibacter sp. GUS3 produced bacterial cellulose (1 g/l) and has the potential to be used for cellulose production.

Keywords

Acknowledgement

This work was supported by the Istanbul Sabahattin Zaim University [Grant number BAP-1000-42 to B.M.].

References

  1. Gomes RJ, Borges M de F, Rosa M de F, Castro-Gomez RJH, Spinosa WA. 2018. Acetic acid bacteria in the food industry: Systematics, characteristics and applications. Food Technol. Biotechnol. 56: 139-151.
  2. Yamada Y. 2016. Systematics of acetic acid bacteria, pp. 1-50. In Matsushita K, Toyama H, Tonouchi N, Okamoto-Kainuma A (eds.), Acetic Acid Bacteria: Ecology and Physiology, Springer, Tokyo, Japan.
  3. De Roos J, De Vuyst L. 2018. Acetic acid bacteria in fermented foods and beverages. Curr. Opin. Biotechnol. 49: 115-119. https://doi.org/10.1016/j.copbio.2017.08.007
  4. Gullo M, La China S, Falcone PM, Giudici P. 2018. Biotechnological production of cellulose by acetic acid bacteria: Current state and perspectives. Appl. Microbiol. Biotechnol. 102: 6885-6898. https://doi.org/10.1007/s00253-018-9164-5
  5. Hasdemir M. 2020. Product Report Apricot, pp. 1- 47. Ministry of Agriculture and Forestry, Institute of Agricultural Economics and Policy Development, Ankara.
  6. Akin EB, Karabulut I, Topcu A. 2008. Some compositional properties of main Malatya apricot (Prunus armeniaca L.) varieties. Food Chem. 107: 939-948. https://doi.org/10.1016/j.foodchem.2007.08.052
  7. Hidalgo C, Mateo E, Mas A, Torija MJ. 2012. Identification of yeast and acetic acid bacteria isolated from the fermentation and acetification of persimmon (Diospyros kaki). Food Microbiol. 30: 98-104. https://doi.org/10.1016/j.fm.2011.12.017
  8. Valera MJ, Laich F, Gonzalez SS, Torija MJ, Mateo E, Mas A. 2011. Diversity of acetic acid bacteria present in healthy grapes from the Canary Islands. Int. J. Food Microbiol. 151: 105-112. https://doi.org/10.1016/j.ijfoodmicro.2011.08.007
  9. Camu N, Gonzalez A, De Winter T, Van Schoor A, De Bruyne K, Vandamme P, et al. 2008. Influence of turning and environmental contamination on the dynamics of populations of lactic acid and acetic acid bacteria involved in spontaneous cocoa bean heap fermentation in Ghana. Appl. Environ. Microbiol. 74: 86-98. https://doi.org/10.1128/AEM.01512-07
  10. Lisdiyanti P, Katsura K, Potacharoen W, Navarro RR, Yamada Y, Uchimura T, et al. 2003. Diversity of acetic acid bacteria in Indonesia, Thailand, and the Philippines. Microbiol. Cult. Collect. 19: 91-99.
  11. Gullo M, Caggia C, De Vero L, Giudici P. 2006. Characterization of acetic acid bacteria in "traditional balsamic vinegar". Int. J. Food Microbiol. 106: 209-212. https://doi.org/10.1016/j.ijfoodmicro.2005.06.024
  12. Versalovic J, Schneider M, Bruijn FJ, Lupski JR. 1994. Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol. Cell Biol. 5: 25-40.
  13. Lane DJ. 1991. 16S/23S rRNA sequencing, pp. 115-175. In Stackebrandt E, Goodfellow M (eds.), Nucleic Acid Techniques in Bacterial Systematics. John Wiley and Sons, New York.
  14. Ruiz A, Poblet M, Mas A, Guillamon J. 2000. Identification of acetic acid bacteria by RFLP of PCR-amplified 16S rDNA and 16S-23S rDNA intergenic spacer. Int. J. Sys. Evol. 50: 1981-1987. https://doi.org/10.1099/00207713-50-6-1981
  15. Huang CH, Lee FL, Liou JS. 2010. Rapid discrimination and classification of the Lactobacillus plantarum group based on a partial dnaK sequence and DNA fingerprinting techniques. Antonie Van Leeuwenhoek 97: 289-296. https://doi.org/10.1007/s10482-009-9409-5
  16. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35: 1547-1549. https://doi.org/10.1093/molbev/msy096
  17. Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120. https://doi.org/10.1007/BF01731581
  18. Chen Y, Bai Y, Li D, Wang C, Xu N, Hu Y. 2016. Screening and characterization of ethanol-tolerant and thermotolerant acetic acid bacteria from Chinese vinegar Pei. World J. Microbiol. Biotechnol. 32: 14. https://doi.org/10.1007/s11274-015-1961-8
  19. Gomes FP, Silva NHCS, Trovatti E, Serafim LS, Duarte MF, Silvestre AJD, et al. 2013. Production of bacterial cellulose by Gluconacetobacter sacchari using dry olive mill residue. Biomass Bioenerg. 55: 205-211. https://doi.org/10.1016/j.biombioe.2013.02.004
  20. Hestrin S, Schramm M. 1954. Synthesis of cellulose by Acetobacter xylinum. II. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem. J. 58: 345-352. https://doi.org/10.1042/bj0580345
  21. Aswini K, Gopal NO, Uthandi S. 2020. Optimized culture conditions for bacterial cellulose production by Acetobacter senegalensis MA1. BMC Biotechnol. 20: 46. https://doi.org/10.1186/s12896-020-00639-6
  22. Gonzalez A, Mas A. 2011. Differentiation of acetic acid bacteria based on sequence analysis of 16S-23S rRNA gene internal transcribed spacer sequences. Int. J. Food Microbiol. 147: 217-222. https://doi.org/10.1016/j.ijfoodmicro.2011.04.005
  23. Mateo E, Torija MJ, Mas A, Bartowsky EJ. 2014. Acetic acid bacteria isolated from grapes of South Australian vineyards. Int. J. Food Microbiol. 178: 98-106. https://doi.org/10.1016/j.ijfoodmicro.2014.03.010
  24. Trcek J. 2005. Quick identification of acetic acid bacteria based on nucleotide sequences of the 16S-23S rDNA internal transcribed spacer region and of the PQQ-dependent alcohol dehydrogenase gene. Syst. Appl. Microbiol. 28: 735-745. https://doi.org/10.1016/j.syapm.2005.05.001
  25. Yamada Y, Akita M. 1984. An electrophoretic comparison of enzymes in strains of Gluconobacter species. J. Gen. Appl. Microbiol. 30: 115-126. https://doi.org/10.2323/jgam.30.115
  26. Navarro D, Mateo E, Torija M, Mas A. 2013. Acetic acid bacteria in grape must. Acetic Acid Bacteria 2: e4.
  27. Kommanee J, Akaracharanya A, Tanasupawat S, Malimas T, Yukphan P, Nakagawa Y. et al. 2008. Identification of Gluconobacter strains isolated in Thailand based on 16S-23S rRNA gene ITS restriction and 16S rRNA gene sequence analyses. Ann. Microbiol. 58: 741-747. https://doi.org/10.1007/BF03175584
  28. Cleenwerck I, De Vos P, De Vuyst L. 2010. Phylogeny and differentiation of species of the genus Gluconacetobacter and related taxa based on multilocus sequence analyses of housekeeping genes and reclassification of Acetobacter xylinus subsp. sucrofermentans as Gluconacetobacter sucrofermentans (Toyosaki et al. 1996) sp. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 60: 2277-2283. https://doi.org/10.1099/ijs.0.018465-0
  29. Qin H, Sun Q, Pan X, Qiao Z, Yang H. 2016. Microbial diversity and biochemical analysis of Suanzhou: A traditional Chinese fermented cereal Gruel. Front. Microbiol. 25: 1311.
  30. Visintin S, Alessandria V, Valente A, Dolci P, Cocolin L. 2016. Molecular identification and physiological characterization of yeasts, lactic acid bacteria and acetic acid bacteria isolated from heap and box cocoa bean fermentations in West Africa. Int. J. Food Microbiol. 216: 69-78. https://doi.org/10.1016/j.ijfoodmicro.2015.09.004
  31. Lisdiyanti P, Kawasaki H, Seki T, Yamada Y, Uchimura T, Komagata K. 2001. Identification of Acetobacter strains isolated from Indonesian sources, and proposals of Acetobacter syzygii sp. nov., Acetobacter cibinongensis sp. nov., and Acetobacter orientalis sp. nov. J. Gen. Appl. Microbiol. 47: 119-131. https://doi.org/10.2323/jgam.47.119
  32. Saichana N, Matsushita K, Adachi O, Frebort I, Frebortova J. 2015. Acetic acid bacteria: A group of bacteria with versatile biotechnological applications. Biotechnol. Adv. 33: 1260-1271. https://doi.org/10.1016/j.biotechadv.2014.12.001
  33. Saeki A, Theeragool G, Matsushita K, Toyama H, Lotong N, Adachi O. 1997. Development of thermotolerant acetic acid bacteria useful for vinegar fermentation at higher temperatures. Biosci. Biotechnol. Biochem. 61: 138-145. https://doi.org/10.1271/bbb.61.138
  34. Matsutani M, Matsumoto N, Hirakawa H, Shiwa Y, Yoshikawa H, Okamoto-Kainuma A, et al. 2020. Comparative genomic analysis of closely related Acetobacter pasteurianus strains provides evidence of horizontal gene transfer and reveals factors necessary for thermotolerance. J. Bacteriol. 202: e00553-19.
  35. Soemphol W, Deeraksa A, Matsutani M, Yakushi T, Toyama H, Adachi O, et al. 2011. Global analysis of the genes involved in the thermotolerance mechanism of thermotolerant Acetobacter tropicalis SKU1100. Biosci. Biotechnol. Biochem. 75: 1921-1928. https://doi.org/10.1271/bbb.110310
  36. Gullo M, Giudici P. 2008. Acetic acid bacteria in traditional balsamic vinegar: Phenotypic traits relevant for starter cultures selection. Int. J. Food Microbiol. 125: 46-53. https://doi.org/10.1016/j.ijfoodmicro.2007.11.076
  37. Ndoye B, Lebecque S, Dubois-Dauphin R, Tounkara L, Guiro AT, Kere C, et al. 2006. Thermoresistant properties of acetic acids bacteria isolated from tropical products of Sub-Saharan Africa and destined to industrial vinegar. Enzyme Microb. Technol. 39: 916-923. https://doi.org/10.1016/j.enzmictec.2006.01.020
  38. Yuan Y, Feng F, Chen L, Yao Q, Chen K. 2013. Directional isolation of ethanol-tolerant acetic acid bacteria from industrial fermented vinegar. Eur. Food Res. Technol. 236: 573-578. https://doi.org/10.1007/s00217-012-1885-6