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Introduction
White-rot fungi have a unique ability to degrade high-molecular weight aromatic polymer, lignin, via the

secretion of extracellular lignin-degrading enzymes such as manganese peroxidase (MnP), lignin peroxidase,
versatile peroxidase, and laccase [1-3]. MnP oxidizes Mn2+ to Mn3+ in an H2O2-dependent reaction, and Mn3+

organic acid chelates oxidize several lignin model compounds and synthetic lignin via the formation of a phenoxy
radical [4-6]. Additionally, MnP participates in lignin biodegradation via thiol and lipid-derived free radicals that
are able to oxidize a variety of nonphenolic aromatic compounds [4, 7]. Recently, there are many reports about the
biodegradation of industrial pollutants by MnPs [8], specifically about their removal of hazardous wastes and
bioremediation of organopollutants in water [9, 10], and bleaching and pulping of cellulose [11]. Many of these
studies focused on the isolation of MnP isozyme and efficiency in the degradation of organic compounds
including dyes. Commonly, MnPs are secreted in multiple isoforms in carbon- and nitrogen-limited media
supplemented with Mn2+ and veratryl alcohol [12, 13].

The marine fungus Phlebia sp. strain MG-60 was isolated and selected from driftwood collected from mangrove
stands in Okinawa, Japan, based on lignin biodegradability under hypersaline conditions [14]. Phlebia sp. strain
MG-60 produces MnP mainly under hypersaline conditions [15]. It was able to brighten unbleached hardwood
kraft pulp extensively even under conditions of 5% (w/v) sea salts. In contrast, pulp was only slightly brightened by
the widely studied white-rot fungus Phanerochaete chrysosporium at 3% (w/v) and 5% (w/v) sea salt
concentrations [14, 16]. The expression pattern of MnPs in nitrogen-limited cultures of Phlebia sp. strain MG-60
(MGMnPs) is differentially regulated under hypersaline conditions at the mRNA level [15]. When MG-60 was
cultured in nitrogen-limited medium containing 3% (w/v) sea salts, higher activity of MnP was observed than that
observed in normal medium. Three MnP-encoding genes (MGmnp1, MGmnp2, and MGmnp3) were isolated and
their corresponding isozymes were identified, and enhancement of the expression of MGmnp2 and MGmnp3 by
the addition of NaCl were reported [15]. However, the biochemical differences of each isozyme were not
identified. Recently, it was reported that this fungus also has the potential of biorefinery agent caused by the
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potential as a biorefinery agent due to it highly selective degradation of lignin and its saccharification and
simultaneous fermentation of cellulose and hemicellulose [17-20]. Since Phlebia sp. MG-60 is a marine white-rot
fungus, it is speculated that the lignin-degrading enzyme may have high salt tolerance, although there are no
reports on this.

Normally, to identify the biochemical differences between MnP isozymes, purification of each isozyme is
essential. However, the difference in timing and amount of expression of each enzyme and similar molecular
weight make them cumbersome to purify. Our previous paper reported that the transformation of Phlebia sp. MG-
60 for forced expression of MGmnp2 was done successfully and moreover the specific expression of MGmnp2
under high-nitrogen condition (non-ligninolytic condition meaning expression of native ligninolytic enzymes
are supressed) was possible [21]. This result led us to the hypothesis that forced expression of each MnP isozyme
gene, specifically under non-ligninolytic condition makes it convenient to purify each MnP isozyme, compared
with the purification by several chromatographic purification steps by the avoidance of contamination of native
MnP isozyme. 

In the present study, transformants with forced expression of MGmnp1 and MGmnp3 were constructed in
addition to MGmnp2. Then, each MnP isozyme was purified simply from non-ligninolytic culture with each
transformant. Finally, the biochemical traits of each simply purified MnP, such as salt-tolerance or
thermostability, were investigated. 

Materials and Methods
Fungal Strain and Incubation Condition

Phlebia sp. MG-60 TUFC40001 (Fungal/Mushroom Resource and Reserch Center, Japan) and its transformants
were maintained on potato dextrose agar (PDA) medium. For the isolation of genomic DNA, potato dextrose
broth (PDB) medium was used. For the selection of transformants showing the specific expression of each MnP
isozyme, Kirk’s high-nitrogen medium (HNM) [22] was used. The forced expression transformants of MGmnp2
were generated in our previous study [21]. 

Construction of MGmnp1 and MGmnp3 Expression Vectors
The expression vectors under the control of the PbGPD (glyceraldehyde-3-phosphate dehydrogenase of

Phlebia brevispora HHB-7030 genomic DNA; protein ID: 29450) gene promoter and terminator for MGmnp1
(pPbGPD-MGmnp1) and MGmnp3 (pPbGPD-MGmnp3) were constructed as described below. The PbGPD gene
was obtained by PCR amplification with the primers PbGPD-F1 and PbGPD-R1 [21], and the amplified fragment
was ligated into the T-Vector pMD20 (Takara Bio Inc., Shiga, Japan). The added AscI restriction enzyme sites,
included in the PbGPD promoter and PbGPD terminator, were obtained using the primers PbGPD-Asc-F1 and
PbGPD-Asc-R1 [21]. MGmnp1 and MGmnp3 genes containing the added AscI restriction enzyme site were
amplified with PCR by using primer sets, gMGmnp1-Asc-F1 (GGGCGCGCCATGGCTTTCAGACAGCTTC)
and gMGmnp1-Asc-R1 (GGGCGCGCCTATTTAGGACGGAGGGAC), gMGmnp3-Asc-F1 (GGGCGCGCC
ATGGCCTCCAAGTTTGCT) and gMGmnp3-Asc-R1 (GGGCGCGCCCTAAGAGTCGTCGCCGTC), which
were designed based on the Phlebia sp. MG-60 MGmnp1 and MGmnp3 gDNA sequence data (Accession
numbers: AB971351 and AB971353), respectively. The amplified MGmnp1 and MGmnp3 genes were ligated into
the expression plasmid after digestion by AscI (New England Biolabs Japan Inc., Japan) according to DNA
Ligation Kit Mighty Mix (Takara Bio Inc.) instructions, and then transformed into competent Escherichia coli JM
109 (Takara Bio Inc.) for amplification.

Transformation
Protoplast isolation and polyethylene glycol (PEG)-mediated co-transformation assays with MG-60 were

performed according to our previous study [21]. Briefly, MG-60 was pre-cultured in 100 ml CYM (yeast extract
2 g/l, polypeptone 2 g/l, glucose 20 g/l, MgSO4-7H2O 0.5 g/l, KH2PO4 0.46 g/l, K2HPO4 1 g/l, vitamin B1 1 mg/l,
thiabendazole 20 μg/l, pH 6.0) medium for 3 days without shaking. After pre-culture, the mycelia were
homogenized for 10 sec and sub-cultured for 3 days in CYM medium. The mycelia were harvested by filtration
and treated with 0.5 M MgSO4 buffer (0.5 M MgSO4-7H2O, 20 mM maleic acid) containing 2.5% (w/v) Cellulase
Onozuka (Yakult, Japan) and 2.5% (w/v) lysing enzymes from Trichoderma (Sigma-Aldrich, USA) at 30°C on a
shaker (NTS-4000B) (Tokyo Rikakikai Co, Ltd., Japan) at 60 rpm for 4 h. The mycelial suspension was overlaid
with 1.0 M SorbOsm (1.0 M sorbitol, 10 mM MES, pH 6.3) and centrifuged at 1,500 ×g in a TOMY LC-122
centrifuge (Tomy Seiko Co., Ltd., Japan) for 20 min. Protoplasts that accumulated at the interface between the two
liquid phases were collected, equaling approximately 7.5×106 protoplasts per one gram of wet mycelial weight.
Then, 1.5×106 protoplasts in 500 μl of 1.0 M SorbOsm were treated with 300 μl of DNA solution containing 20 μg
plasmid in 1 M sorbitol and 0.04 M CaCl2. The tube was placed on ice for 30 min. After treatment, 800 μl of 50%
(w/v) PEG4000 and then 75 ml regeneration medium were added to the tube. The entire contents were poured onto 50
petri dishes (2.0×104 cells/ml), and incubated at 30°C. Transformants with hygromycin resistance were selected by
treatment with 15 μg/ml hygromycin B (Life Technologies, USA). MGmnp1 and MGmnp3 transformants were
selected by genomic PCR amplification with the primers PbGPD-prom-F1 and gMGmnp1-Asc-R1or gMGmnp3-
Asc-R1. 

Enzyme Activity Assay and Selection
Wild-type and isolated transformants were cultured in 10 ml HNM at pH 4.5 in 100-ml Erlenmeyer flasks. After

inoculation, the cultures were incubated for 5 to 20 days at 28°C in the dark, then 1 ml of culture was collected
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every 5 days. Crude enzymes were prepared by filtration and centrifugation (15,000 ×g, 4°C, 10 min). MnP activity
was determined spectrophotometrically by measuring the oxidation of 2,6-dimethoxyphenol to coerulignone (ε =
49.6 mM−1cm−1) in 50 mM malonate buffer (pH 4.5) containing 1.0 mM MnSO4 1.0 mM 2,6-dimethoxyphenol
and 0.2 mM H2O2 at 469 nm, 37°C. One unit of peroxidase activity was defined as the amount of enzyme required
to oxidize 1 μmol of 2,6-dimethoxyphenol per min. 

Preparation of Recombinant MnP Isozymes
Selected transformants showing high peroxidase activity in HNM were inoculated into 500-ml Erlenmeyer

flasks with 100 ml Kirk’s HNM each, then the cultures were incubated at 28°C for production of sufficient
peroxidase activity (10 to 20 days). After incubation, the mycelium was removed by the filtration with Miracloth
(Merck, Germany). PEG (average molecular weight, 3,000) was added to the filtrate to make a 5% solution. The
pH was then adjusted to 7.2 with 5 N aqueous NaOH. After the slime was filtered off, the filtrate was loaded onto a
DEAE-Sepharose (Pharmacia) column equilibrated with 20 mM phosphate buffer (pH 7.2). The column was
eluted successively with the following buffers: 20 mM phosphate (pH 6.0), 20 mM succinate (pH 5.5), and 50 mM
succinate (pH 4.5). Fractions containing MnP activity were eluted with 50 mM succinate (pH 4.5). This partially
purified MnP fraction was concentrated by ultrafiltration (10 kDa cut-off), then the concentrated MnP fraction
was used for SDS-PAGE and enzymatic experiments. Relative activity on medium before and after purification
was shown in Table 1. As control, same preparation was carried out from the Kirk’s LNM [22] with P.
chrysosporium (PCMnP). 

Enzyme Activity under Different Salt Concentrations
NaCl was added to 71 mM malonate buffer (pH 4.5) at concentrations of 0, 250,580, 770, 1025, 1282 mM

respectively. Then, 700 µl of these malonate buffers with NaCl were used for the enzyme assay by the mixing with
50 µl of 20 mM MnSO4, 50 µl of 20 mM 2,6-dimethoxyphenol, 100 µl of MnP enzyme and 100 µl of 2 mM H2O2.
We then started and monitored the reaction of oxidation of 2,6-dimethoxyphenol according to method described
before [21]. The actual concentration of NaCl in the reaction mixture was 0, 175, 406, 539, 717, and 897 mM,
respectively. The remaining activities were indicated as relative value compared with the enzymatic activity
without NaCl.

Salt-Tolerance Experiment of MnP Isozyme
One hundred microliters of MnP enzyme solution was mixed with 700 µl of 71 mM malonate buffer (pH 4.5)

with NaCl at concentrations of 0, 250,580, 770, 1025, and 1282 mM respectively in test tube (the actual
concentrations of NaCl in test tubes are 0, 219,508, 674, 897, and 1122 mM respectively) and incubated for 30 or
120 min at 37°C in the dark. Then, 50 µl of 20 mM MnSO4, 50 µl of 20 mM 2,6-dimethoxyphenol, and 100 µl of 2
mM H2O2 were added and the reaction of oxidation of 2,6-dimethoxyphenol was monitored according to method
described before [21]. The remaining activities were indicated as relative value compared with the enzymatic
activity as measured in the buffer with NaCl immediately without incubation in malonate buffer with NaCl. 

Thermo Tolerance of MnP Isozymes
One hundred microliters of MnP enzyme solution was incubated at different temperatures (4, 20, 25, 30, 35, 40,

45, 50, 60, and 70°C) for 60 min. Immediately afterwards, the enzyme was immersed in an ice bath and then
enzyme was mixed with 700 µl of these malonate buffers, 50 µl of 20 mM MnSO4, 50 µl of 20 mM 2,6-
dimethoxyphenol, and 100 µl of 2 mM H2O2, and then we started and monitored the reaction of oxidation of 2,6-
dimethoxyphenol according to method described before [21]. The remaining activities were indicated as relative
value compared with the enzymatic activity after incubation at 4°C.

Results and Discussion
Selection of Transformants

One hundred randomly isolated strains with hygromycin resistance were selected by genomic PCR
amplification with the primers PbGPD-prom-F1 and gMGmnp1-Asc-R1 or gMGmnp3-Asc-R1 to confirm the
insertion of pPbGPD-MGmnp1 and pPbGPD-MGmnp3, respectively. The insertion efficiency (co-transformation
efficiency) of pPbGPD-MGmnp1 was 77% (77 co-transformants/100 transformants with hygromycin resistance)
and that of pPbGPD-MGmnp3 was 62% (62 co-transformants/100 transformants with hygromycin resistance).

Table 1. Easy purification of MnP from the culture with isozyme-selective expression. 

Enzyme Purification stage Volume(ml) Protein amount 
(mg) Total activity (U) Relative activity 

(U/mg) Recovery (%)

MnP1 Medium
DEAE

80
24

7.85
1.88

30.44
14.64

3.88
7.77

100
48

MnP2 Medium
DEAE

100
19

17.86
0.89

129.43
11.26

7.25
12.59

100
9

MnP3 Medium
DEAE

380
14

31.13
0.87

78.60
11.29

2.53
12.99

100
14

Medium: Medium after removal of mycelium.
DEAE: Enzyme solution concentrated by ultrafiltration after DEAE fractionation.
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Our previous study reported that the co-transformation efficiency of MGmnp2 expression vector (pPbGPD-
MGmnp2) was 89.1% (181 co-transformants/203 transformants with hygromycin resistance) [21]. It was also
reported that the resulting efficiency of co-transformation of pPbGPD-HPT and knockdown construct of
pyruvate decarboxylase gene (pMGPDC-RNAi) was 75% (108 co-transformants/144 hygromycin-resistant
strains) [23]. From these high efficiency co-transformation results, it was concluded that the co-transformation
strategy is effective for the transformation of Phlebia sp. MG-60. 

Ten transformants were selected from the co-transformants with each MnP expression vector and we then
checked the MnP activity in Kirk’s-HNM. Fig. 1 showed the accumulation of MnP activity during 20 days'
incubation in 10 ml of HNM. Although a trace amount of MnP activity was observed in the culture with wild-type
Phlebia sp. MG-60, the transformant line of pPbGPD-MGmnp1showed significant accumulation of MnP activity
except for the transformant line MnP1-30. The highest accumulation of MnP activity was observed in the
transformant line MnP1-4. In the case of pPbGPD-MGmnp3 transformants, lines MnP3-1, -16, -30, -46, -60 and -
64 showed higher accumulation of MnP activity compared with the trace activity of wild type. The highest
accumulation of MnP activity was observed in the culture with MnP3-46. In the case of pPbGPD-MGmnp2
transformants, all co-transformants showed higher MnP activity accumulation than wild type and the highest
accumulation was observed in the culture with MnP2-45. It was reported that the addition of NH4

+ (HNM) could
supress the production of MnP activity in the culture with Phlebia sp. MG-60 [21,24], and that the addition of
NH4

+ could delay the appearance of ligninolytic activity in P. chrysosporium [25]. In the present study, MnP
activity was significantly suppressed in the HNM culture and transformants which was transformed with
MGMnP isozyme genes and showed significant accumulation of MnP activity. Therefore, these MnP activities
suggest that the specific expression of each recombinant MnP isozyme was done successfully.

Relatively higher activities of MnP were observed in the culture with the transformants of pPbGPD-MGmnp1
(maximum is approx. 500 U/L) compared with pPbGPD- MGmnp2 (maximum is approx. 50 U/L) or pPbGPD-
MGmnp3 (maximum is approx. 70 U/L) although the common GDP promoter dehydrogenase in P. brevispora
HHB-7030 was used for expression. It was reported that the expression of MGmnp1 is dominant in LNM without
salt, however, MGmnp2 and MGmnp3 expressed in the culture with sea salts or NaCl dominantly [15]. It it was also
reported that the transcription level of MGmnp2 did not collate with MnP activity [15]. From these experimental
results, therefore, involvement of post-transcriptional regulation was also suggested. According to the general
eukaryotic rule for N glycosylation (Asn-X-Ser/Thr) [26], two and three asparagines potentially involved in
glycan linkage were found in MGMnP2 (N132 and N218) and MGMnP3 (N132, N218, and N348), whereas only
one (N103) was found in MGMnP1 [15]. Different numbers of glycosylation positions may affect these expression
traits. 

Fig. 1. Production of MnP activity by the forced expression of MGmnp1 (A), MGmnp2 (B) and MGmnp3 (C)
in HNM. Wt: native Phlebia sp. MG-60.
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The time-dependent production of MnP activity is also different between wild type in Kirk’s-LNM and
transformant in Kirk-HNM. In previous studies, wild-type MnP activity of Phlebia sp. MG-60 in LNM showed a
short peak at 6-10 days and then decreased rapidly [15]. On the other hand, in the present study, transformants
accumulated MnP activity in HNM in a time-dependent manner until day 20. This trait suggested that the
production of MnP activity in the LNM by the wild type depends on the transient gene transcription, and there are
some factors responsible for the rapid inactivation of the enzyme once made. The ability to accumulate each MnP
isozyme in a time-dependent manner in the present study may be an advantage in obtaining an isozyme to
investigate various properties of the enzyme. 

Easy Purification of MnP Isozymes
Transformant lines MnP1-4, MnP2-46 and MnP3-45 were selected based on the productivity of MnP activity in

HN medium as described above. Then, each transformant was cultured in 100 ml of HNM and the separated
culture both was loaded and easily purified by DEAE-Sepharose, then the fraction eluted with 50 mM succinate
(pH 4.5) was collected and analyzed. Fig. 2A showed SDS-PAGE analysis of the obtained enzyme fraction before
purification. Although a trace amount of protein remained at near 75 kDa, each enzyme solution of the
transformant lines MnP1-4, MnP2-46 and MnP3-45 showed a strong single band on SDS-PAGE level at around
45, 49, and 47 kDa, respectively (Fig. 2B). In our previous study, the corresponding isozymes of the MnP isozyme
genes MGmnp1, MGmnp2, and MGmnp3 were identified by peptide mass fingerprinting analysis as the MnP
isozymes at 45, 50, and 47 kDa respectively. The size order of each enzyme was the same as in previous study, but
the molecular weight of MGMnP2 seemed a little low. This may have been caused by failed glycosylation. As
mentioned above, MGMnP2 has two asparagines potentially involved in glycan linkage (N132 and N218) [15].
However, overall, selective MGMnPs expression and easy purification of recombinant MnP isozymes in HNM
was successfully done. Recombinant MnP expression has been reported in E. coli, however, in vitro has refolding
would be a way to obtain active protein, and then low yields and the lack of glycosylation should be overcome [27,
28]. Therefore, the selective expression of the recombinant MnP isozymes in HNM in the present study may be
applicable to MnP with different origin, and may be used as an applied expression system. 

Effect of the Salt on the Activity and Salt-Tolerance of MnPs
To test the saline tolerance, enzyme activity was determined under different NaCl concentration. Fig. 3 showed

the enzyme activity of each recombinant MGMnP under different NaCl concentration. Relative activity compared

Fig. 2. SDS-PAGE of the non-purified (A) and purified (B) MnPs. MGMnP1 (Lane 1), MG-MnP2 (Lane 2), and MG-
MnP3 (Lane 3), M: protein markers, Lane 4: MnP from P. chrysosporium.

Fig. 3. Effect of the NaCl on MGMnP activity. Activities of each purified MnPs were measured in the reaction mixture
with different concentrations of NaCl. The remaining activities were indicated as relative value compared with the enzymatic
activity without NaCl (Concentration = 0 mM).
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with 0 mM NaCl showed no decrease of activity in the reaction mixture with NaCl. Interestingly, enzyme activity
of MnP1 tended to increase in the reaction mixture containing high concentration of NaCl. Si and Cui reported
that the activity of MnP from Perenniporia subacida (Pspd) was stimulated by chloride ion, however, high
concentration of NaCl decreased the activity of Pspd slightly [29]. Therefore, the result that the activity of
MGMnP1 is enhanced by high concentration of NaCl may be a biochemical feature in Phlebia sp. MG-60, and
MGMnPs may have better salt-tolerance compared with Pspd.

The activity was measured immediately after addition of buffer containing NaCl to determine the effect of NaCl
on enzyme activity in the above experiment. However, the activity tolerance under high salt concentration
condition has not yet been investigated. In order to estimate the tolerance of each MGMnP toward NaCl, the
residual activity when stored at different salt concentrations for 30 min and 2 h was examined (Fig. 4). After 30 min
stored at 37°C, there was no decrease in the activity of each MnP by incubation with NaCl-containing buffer.
Furthermore, the activity of MnP1 tended to be stimulated by the incubation for 30 min with NaCl-containing
buffer compared with the unincubated enzyme. After 2 h incubation at 37°C, the activity of PCMnP was decreased
drastically up to 10 to 20% remaining compared with unincubation. On the other hand, the decrease in activity of
MGMnP2 and MGMnP3 (50 to 80% remaining) was milder than that of PCMnP, and interestingly, no decrease in
activity was observed for MGMnP1. These results suggest that the MnP isozymes secreted by Phlebia sp. MG-60
retains relatively high salt tolerance, and in particularly, MGMnP1 showed the ability to retain remarkably strong
salt tolerance.

Several papers reported the effect of metallic ion for purified MnP derived from different white-rot fungi [30-
32]. Overall, from previous reports, Na+ tends to not affect or slightly affect the activity for purified MnPs,
although Ca2+ and Fe2+ tend to inhibit the activity at low concentration (1-10 mM). While it has been reported that
chloride ion does not affect MnP activity derived from P. chrysosporium, even when present at a concentration of
250 mM [33], a low concentration of chloride ion (around 100 mM) promotes the activity of MnP derived from
Pspd and a high concentration of chloride ion (over 500 mM) has been reported to reduce the activity of Pspd [29].
In the present study, it was shown that high concentration of NaCl solution had no effect on the activity and
promoted the activity of MGMnP1. MGMnP2 and MGMnP3 showed relatively high tolerance for high
concentration of NaCl. Since Phlebia sp. MG-60 is a salt-tolerant basidiomycete isolated from mangroves forest,
MGMnPs may also have evolved to adapt to chloride-rich environments.

Thermostability of MnPs
Each enzyme was kept at different temperatures for 60 min and the remaining activity was examined to estimate

the thermostability of each MnP enzyme by comparison with that kept at 4°C. Fig. 5 showed the remaining activity
after heat treatment for 60 min. All MnP enzymes were stable up to 40°C. MGMnP3 and PCMnP showed decrease
of activity over 40°C, then the activity disappeared at 50°C. MGMnP2 is stable at 45°C while the activity decreases
around 50°C and disappears completely at 60°C. On the other hand, MGMnP1 keeps half of its activity at 60°C,

Fig. 4. Salt-tolerance of MGMnPs. Each purified MnP was pre-incubated with different concentration of NaCl for 30 min
(A) or 120 min (B) then the activity was measured. The remaining activities were indicated as relative value compared with the
enzymatic activity at measured in the buffer with NaCl immediately without incubation in malonate buffer with NaCl
(Concentration = 0 mM). PC means MnP from P. chrysosporium.
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then the activity completely disappears at 70°C. MGMnP1 has relatively high thermostability in MGMnPs. In
other studies, the thermostability of purified MnPs also differed widely; it was reported that purified MnP from
immobilized P. chrysosporium was stable at 40°C, then it was inactivated totally at 65°C [33]. MnP from Stereum
ostrea was stable up to 35°C, but was inactivated rapidly at temperature higher and then this, then was inactivated
totally at 65°C [31]. Recently, purified MnP from Bjerkandera adusta showed higher tolerance for temperature
[34]. Compared with these reports, MGMnP1 showed relatively high tolerance for high temperature. The
mangrove from which Phlebia sp. MG-60 was isolated is a salt marsh in tropical and subtropical regions. It may
have been adapted to relatively high-temperature environments. From the phylogenetic analysis of Class II fungal
secreted heme peroxidase, it was reported that MGMnP2 and MGMnP3 are contained in the group of the typical
fungal Mn2-oxidizing, long MnPs. On the other hand, MGMnP1 was classified into the group of short MnPs [3].
This classification based on the amino acid sequence may also be involved in the finding that MGMnP1 has higher
salt tolerance and thermostability.

In the present study, we established forced expression transformants of three types of MnP isozymes. In
addition, the fact that this fungus hardly produces native MnP in a HNM was used to perform isozyme-selective
expression and simple purification in HNM. This system gives a single band of each MGMnP isozyme via easy
DEAE-sepharose purification, so this process showed potential to obtain each of the MnP isozymes easily. The
resulting MGMnPs showed high tolerance for NaCl compared with the MnP of P. chrysosporium. It was worth
noting that high concentration of NaCl (over 200 mM to 1200 mM) can enhance the activity of MGMnP1.
Additionally, MGMnP1 showed relatively high thermostability compared with other isozymes, and it is possible
that MGMnPs may have evolved to adapt to chloride-rich environments, such as mangrove forest.
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