## The Effects on Melanogenesis in B16F10 Melanoma Cells and the Antiinflammatory Activities of an Ethyl Acetate Fraction from *Glechoma hederacea* var. *longituba*

Hyeon-Ji Yeom<sup>1</sup>, Min-Jeong Oh<sup>1</sup>, Jung-Woo Chae<sup>2</sup> and Jin-Young Lee<sup>1\*</sup>

<sup>1</sup>Division of Cosmetics and Biotechnology, Hoseo University, Chungnam 31499, Korea <sup>2</sup>Gyeonggi-do Forest Environment Research Institute, Osan 12408, Korea

Received November 30, 2021 / Revised January 20, 2022 / Accepted February 24, 2022

This study aimed to confirm the possibility of being used as a cosmetic material material through the verification of the whitening and anti-inflammatory activities of an ethyl acetate fraction from *Glechoma hederacea* var. *longituba* (GHEA). The observed electron donating and ABTS<sup>+</sup> radical scavenging abilities of GHEA were 89.6% and 88.7%, respectively, at 1,000  $\mu$ g/ml concentration, with a tyrosinase inhibitory effect of 22.3% at the same concentration. For cell viability, a rate of 80% or more was observed in all concentrations that treated GHEA on melanoma and macrophage cells. Protein and mRNA expression inhibition was measured by Western blot and RT-PCR for 25, 50, and 100  $\mu$ g/ml concentrations, and it was confirmed that expression decreases in a concentration-dependent manner as GHEA concentration increases. The inhibition of the whitening-related factors MITF and TRP-2 were superior following GHEA treatment than those of the control group treated with kojic acid of 100  $\mu$ g/ml concentration. For tyrosinase, the lowest mRNA expression rate was 29.1% at 100  $\mu$ g/ml which confirmed excellent inhibition. In analyzing the effects of pro-inflammatory cytokines IL-1 $\beta$ , IL-6, and TNF- $\alpha$  on protein and mRNA expression, IL-6 and TNF- $\alpha$  showed high protein and mRNA inhibition compared to a vitamin C control group. Based on these experimental results, GHEA could be applied as a natural cosmetic material.

Key words : Anti-inflammatory, cytokine, Glechoma hederacea var. longituba, IL-6, whitening

## 서 론

현대 사회는 소비자들의 의학적, 생활적 수준이 향상됨에 따라 건강한 삶과 아름다움을 위하여 화장품의 유해성분에 대한 관심과 친환경적인 제품을 선호하는 경향이 강해지고 있다[12, 32]. 이러한 시대적 변화로 인하여 관련 화장품 시장 의 규모가 확대되고 있으며, 유효성을 가진 기능성 합성원료 를 대체하여 화장품에 이용 가능한 천연물 소재에 대한 연구 가 활발히 진행되고 있다[9].

피부의 색에 관여하는 적갈색 또는 흑갈색의 고분자 화합물 인 melanin [19]은 자연계에 널리 분포하며 외부의 자외선으 로부터 피부를 보호하는 역할[21]을 하지만 과도하게 생성되 면 melanin 전구물질의 독성으로 인하여 피부노화 촉진 및 세포 사멸, 피부암을 유발하며 주근깨, 검버섯, 기미 등과 같은 과색소 침착의 원인이 되기도 한다[4]. 자외선으로 인해 피부 의 keratinocyte가 자극을 받으면 a-melanocyte stimulating hormones (a-MSH)를 생성하며, 생성된 a-MSH는 신호전달 물질로써 멜라닌 세포로 신호를 보내어 세포 내 cyclic adenosine monophosphate (cAMP)의 생산을 자극하게 된다. Microphthalmia-associated transcription factor (MITF)는 cAMP의 반응 요소인 cAMP response element-binding protein (CREB)에 의해 발현이 조절되는 전사인자로 tyrosinaserelated protein (TRP)-1, TRP-2, tyrosinase의 생합성을 촉진하 여 멜라닌 생성이 증가하게 된다[11, 28].

염증(inflammation)은 세균 및 미생물 감염, 화학물질 및 물리적 작용 등의 다양한 외부 자극에 의해 인체조직이 손상 되면 면역세포(immunocyte)에서 이에 대응하기 위해 염증 매 개물질을 분비하는 시스템의 국소적인 방어기전이다[13, 16]. 염증반응을 조절하는 대식세포(macrophage cell)는 lipopolysaccharide (LPS)에 의한 자극의 반응으로 interleukin (IL)-1β, IL-6 및 tumor necrosis factor-a (TNF-a)와 같은 전 염증성 cytokine과 염증 매개물질인 nitric oxide (NO), reactive oxygen species (ROS) 및 prostaglandin E<sub>2</sub> (PGE<sub>2</sub>) 등을 분비한다 [18, 29]. Cytokine 중 하나인 TNF- a는 면역세포를 조절하고 다른 pro-inflammatory cytokine들의 생성을 활성화하여 염증 반응에 영향을 미치며, IL-1β는 대식세포를 활성화시키고 대 표적인 cytokine인 IL-6는 다양한 요인으로 합성되어 염증질

<sup>\*</sup>Corresponding author

Tel : +82-41-540-9552, Fax : +82-41-540-9538

E-mail : jylee@hoseo.edu

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

환의 진행과정에 중요한 역할을 한다[3]. 따라서 이들의 활성 을 억제하고 조절함으로써 염증 질환을 예방할 수 있는 소재 에 대한 연구가 활발히 진행되고 있다.

긴병꽃풀(Glechoma hederacea var. longituba)은 금전초(金錢 草)의 두 가지 종 중 하나로 꿀풀과(Lamiaceae)의 여러해살이 초본식물이다[10]. 우리나라에서는 경기도와 전라남도, 경상 남도, 황해 이북 등에 분포하고 있으며 주로 산지의 습한 환경 의 양지에서 자란다. 민간에서는 관상용으로도 쓰이며 예로부 터 기관지염, 담석증, 요로결석 제거, 해독 등의 염증관련 질환 을 다스리는 효능을 가지고 있다고 하여 약용으로도 사용되어 왔다[15, 22].

현재 긴병꽃풀의 정유에 대한 연구 결과[17, 26]와 금전초 관련으로는 항산화 및 세포보호 효과[10], 염증성 세포 활성들 의 생성 조절에 관한 연구[20] 등의 다양한 연구결과가 있으나, 긴병꽃풀의 특정 분획물에 대한 기능성 활성 관련 연구는 미 흡한 실정으로 본 연구에서는 긴병꽃풀의 ethyl acetate 분획 물을 이용하여 피부 미백 및 항염증 활성을 확인함으로써 기 능성 화장품의 천연 소재로서의 활용 가능성을 알아보고자 하였다.

### 재료 및 방법

#### 시료의 추출 및 분획

본 실험에 사용된 긴병꽃풀은 경기도 오산시에 위치한 물향 기수목원 내에 자생하고 있는 것을 5~9월경에 채취하였으며 세척 후 건조한 뒤 파쇄하여 시료 중량의 10배수에 해당하는 70% ethanol을 넣고 24시간 실온에서 침지하여 추출하였다. 이후 침전물과 상등액을 분리하여 3회 반복 추출하였으며 여 과지(Whatman No.2)로 추출물을 여과하고 EYELA evaporator를 사용하여 감압 농축한 후 동결 건조하여 수분을 제거 한 가루 형태의 시료를 얻었다. Ethyl acetate 분획물을 얻기 위해 가루 형태의 진병꽃풀 70% ethanol 추출물에 동량의 ethyl acetate로 3회 반복 분액 하였으며, ethyl acetate층과 H<sub>2</sub>O층 중 ethyl acetate층을 분리하여 이전과 동일한 방법으로 감압 농축 후 동결 건조하여 ethyl acetate 분획물을 얻었다. 이는 - 20℃에서 보관하며 본 실험의 시료로 사용하였다.

### 시약 및 기기

항산화 활성 측정을 위한 전자공여능 및 ABTS<sup>+</sup> radical 소 거능 측정 실험에 사용된 시약인 2,2-diphenyl-1-picrylhydrazyl (DPPH)와 potassium persulfate는 Sigma-Aldrich Corporation (USA)에서 구입하여 사용하였으며 2,2'-azino-bi s (3-ethylbenzothiazoline-6-sulphonic acid)는 Wako Pure Chemical Industries. Ltd. (Japan)에서 구입하여 사용하였다. 미백활성 측정 실험에 사용된 시약인 tyrosinase from mushroom과 L-3,4-dihydroxy-phenyl-alanine (L-DOPA) 등은 Sigma Chemical Co. (USA)에서 구입하여 사용하였다.

본 연구에서 세포 배양 및 세포 독성 측정에 사용된 melanoma cell인 B16F10와 macrophage cell인 Raw 264.7은 American Type Culture Collection (ATCC, USA)에서 구입하 여 사용하였다. 세포 배양을 위해 사용한 penicillin/streptomycin, fetal bovine serum (FBS), dulbecco's modified eagle medium (DMEM), phosphate buffered saline (PBS)와 trypsin 은 Thermo Fisher Scientific (HyClone<sup>™</sup>, USA)에서 구입하였 으며, dimethyl sulfoxide (DMSO)는 BioShop (Canada)에서 구입하였고 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT)는 Sigma-Aldrich Corporation (USA)에 서 구입하여 사용하였다.

또한 단백질 발현 실험에 사용된 β-actin 및 MITF, TRP-1, TRP-2, tyrosinase, IL-1β, IL-6, TNF-α의 primary antibody와 anti-mouse의 secondary antibody는 Santa Cruz (CA, USA) 에서 구입하였다. Reverse transcription-polymerase chain reaction (RT-PCR)에 이용한 GAPDH 및 MITF, TRP-1, TRP-2, tyrosinase, IL-1β, IL-6, TNF-α는 Bionics (Seoul, Korea)에서 구입하였으며 cDNA polymerase kit, Go Script<sup>TM</sup> Reverse Transcription kits는 Promega (USA)에서 구입하여 사용하였다.

실험에 사용된 기기는 pH meter (Mettler-Toledo AG, Switzerland), vortex (Scientific Industries, INC, USA), microplate reader (Tecan, Austria), autoclave (JS Research Inc., Korea), freeze drier (ILShin BioBase Co., Korea), rotary vacuum evaporator (EYELA, Japan), CO<sub>2</sub> incubator (Vision Scientific, Korea), microscope (Olympus, Japan), haemacytometer (Marienfeld, Germany), centrifuge (Hanil Science Industrial Co., Korea), micro centrifuge (gyrozen, Korea), digital shaker (Daihan Scientific, Korea), Mini-PROTEAN® tetra cell (Bio-Rad, USA), Mini Trans-Blot® Cell (Bio-Rad, USA), Davinch-Chemi<sup>™</sup> Imager CAS-400SM System (Davinch-K Co., Korea), PCR (C-100, Bio-Rad, USA)의 기기를 사용하였 다.

## 실험 방법

### Electron donating ability 측정

전자공여능(electron donating ability, EDA)은 Blois의 방법 [1]을 변형하여 측정하였다. 각각의 농도별로 조제한 추출물 120 µl와 2,2-diphenyl-1-picrylhydrazyl (DPPH)를 100% ethanol에 용해한 용액을 60 µl씩 96-well plate에 넣고 혼합한 후 실온의 암실에서 15분간 반응시켜 microplate reader를 이용 하여 517 nm에서 흡광도를 측정하였다. 전자공여능은 시료용 액의 첨가군과 무첨가군의 흡광도 감소율로 나타내었다.

전자공여능(%) = (1 - 시료첨가군의 흡광도/무첨가군의 흡 광도) ×100

### ABTS+ radical 소거능 측정

ABTS<sup>+</sup> radical이 탈색되는 원리를 이용한 항산화 활성 측정 방법인 ABTS<sup>+</sup> decolorization assay [27]에 의하여 측정하였 다. 7 mM의 2,2-azino-bis(3-ethyl-benthiazoline-6-sulfonic acid) diammonium salt (ABTS) 용액에 2.45 mM의 potassium persulfate를 넣어 혼합한 후 24시간 동안 실온의 암실 조건에 서 반응시켰다.

ABTS<sup>+</sup> radical이 형성된 용액은 100% ethanol로 희석하여 실험에 사용하였으며, 농도 별 시료용액과 ABTS<sup>+</sup> radical 용액 을 100 µl씩 1:1의 비율로 혼합하여 700 nm에서 흡광도를 측정 하였다.

ABTS<sup>+</sup> radical 소거능(%) = (1 - 시료첨가군의 흡광도/무첨 가군의 흡광도) ×100

### Tyrosinase 저해활성 측정

Tyrosinase 저해활성 측정은 Yagi 등의 방법[30]에 따라 실 험을 실시하였다. 반응구는 농도별 시료용액 40 µJ와 67 mM의 sodium phosphate buffer (pH 6.8) 80 µl, 10 mM L-DOPA를 녹인 기질액 40 µJ를 넣은 혼합액에 200 U/ml mushroom tyrosinase를 40 µJ씩 첨가하여 37℃에서 10분간 반응시킨 후 생 성된 DOPA chrome을 홉광도 492 nm에서 측정하였다. Tyrosinase 저해활성은 시료용액의 첨가군과 무첨가군의 홉 광도 감소율로 나타내었다.

## 저해율(%) = (1 - 시료첨가군의 흡광도/무첨가군의 흡광도) ×100

#### 세포주 및 세포 배양

본 실험에 사용된 melanoma cell인 B16F10과 macrophage cell인 Raw 264.7은 American Type Culture Collection (ATCC, USA)에서 분양받아 사용하였다. 10%의 FBS와 1%의 penicillin/streptomycin (100 U/ml)을 첨가한 DMEM 배지를 사용하여 37℃의 온도와 5% CO<sub>2</sub> 조건 하의 incubator에서 계 대 배양하였다.

### MTT assay에 의한 세포 독성 측정

세포에 대한 시료의 독성을 확인하기 위하여 Carmichael의 방법[2]에 따라 실험을 실시하였다. Melanoma cell (B16F10)과 macrophage cell (Raw 264.7)을 96-well plate에 1×10<sup>5</sup> cells/ well이 되도록 180 山씩 분주하여 37℃, 5% CO<sub>2</sub> incubator에서 24시간 배양한 후 농도별로 조제한 시료용액을 20 山씩 처리하 여 동일 조건의 incubator에서 24시간 배양하였다. 이후 MTT 용액을 2.5 mg/ml의 농도로 제조하여 40 山씩 첨가하였으며 3시간 반응시킨 후 배양액을 제거하고 각 well당 DMSO 100 니씩 가하여 실온에서 10분간 반응시킨 뒤 ELISA reader로 540 nm에서 홉광도를 측정하였다. 세포 생존율 측정은 시료를 처리하지 않은 군의 홉광도를 100%로 하여 시료첨가군의 상

- 대적인 세포 생존율을 나타내었다.
  - 세포 생존율(%) = (시료첨가군의 흡광도/무첨가군의 흡광 도) ×100

### Western blot을 통한 단백질의 발현 측정

미백관련 인자들인 microphthalmia-associated transcription factor (MITF), tyrosinase related protein-1 (TRP-1), TRP-2, tyrosinase와 cytokine 생성에 관련된 interleukin (IL)-1β, IL-6 및 tumor necrosis factor-a (TNF-a) 인자들의 활성을 알아보 기 위하여 western blot을 통해 단백질 발현 정도를 측정하였 다. Melanoma cell인 B16F10과 macrophage cell인 Raw 264.7 을 100 mm tissue culture dish에 1×10<sup>6</sup> cells/dish가 되도록 seeding한 후 37℃, 5% CO<sub>2</sub> incubator에서 24시간 동안 배양 하였으며, B16F10 세포에는 100 nM의 α-melanocyte-stimulating hormone (a-MSH)를 처리하였으며 Raw 264.7 세포에는 2 µg/ml의 lipopolysaccharide (LPS)를 처리하여 2시간 동안 반응시켰다. 배지를 제거하여 1x PBS로 세척 후 시료를 농도 별로 처리한 배지로 24시간 배양한 후 배지를 제거하고 1x PBS로 2회 세척하여 다음의 과정을 진행하였다. Complete mini 1 tab을 radio-immunoprecipitation assay (RIPA) buffer 10 ml에 가한 용액을 B16F10 세포에는 80 µl, Raw 264.7 세포 에는 100 비씩 각 dish에 분주하여 세포를 lysis한 후 centrifuge 를 이용해 4℃, 13,200 rpm에서 20분간 원심분리하였다. 그 후 BCA protein assay kit를 사용하여 상층액을 정량하였으며, 10% SDS-PAGE상에서 20 µl의 단백질을 전기영동하여 분리 하였다. 분리된 단백질은 transfer 과정을 통해 polyvinylidene fluoride (PVDF) membrane에 옮긴 후 실온에서 1시간 동안 blocking buffer (5% skim milk in tris-buffered saline and tween 20 (TBST))로 blocking을 진행하였다. Primary antibody를 3% skim milk in TBST에 1:200 및 1:500의 비율로 희석 하여 4℃에서 3시간 30분 동안 반응시킨 후, 10분 간격으로 TBST를 사용하여 3회 세척하였으며 1:2,000으로 희석한 secondary antibody는 4℃에서 90분간 반응시킨 후 다시 TBST로 10분씩 3회 세척하여 Davinch-ChemiTM Imager CAS-400SM system을 이용하여 밴드를 확인하였다.

## Total RNA 분리 및 cDNA 합성

B16F10 세포와 Raw 264.7 세포를 100 mm culture dish에 1×10<sup>6</sup> cells/dish가 되도록 seeding하여 24시간 동안 배양한 후 B16F10 세포에는 100 nM의 α-MSH를 처리하였으며 Raw 264.7 세포에는 2 µg/ml의 LPS를 처리하여 2시간 동안 반응시 켰다. 그 다음 농도별 시료용액을 처리하여 24시간 배양한 후 배지 상등액을 제거한 뒤 1x PBS로 2회 세척하였다. Trizol lysis buffer를 dish에 1 ml씩 분주하여 각각의 세포를 lysis한 후 수거한 lysate에 chloroform 200 µl를 분주하여 위아래로 30초간 흔들어주어 반응시켰다. 이후 centrifuge를 이용해 4℃,

13,200 rpm에서 20분간 원심분리하여 상층액 500 µl와 동량의 isopropanol를 첨가하여 섞어주었으며 다시 이전과 동일한 조 건에서 원심분리하였고, 상층액을 제거하여 RNA pellet을 얻 었다. 각각의 e-tube에 75% EtOH-diethylpyrocarbonate (DEPC) water를 1 ml씩 분주하여 동일 조건의 centrifuge를 사용하여 원심분리한 뒤 상층액을 완전히 제거하였다. 여기에 DEPC water를 50 µl씩 분주하여 RNA pellet을 녹인 후 A260/A280의 비율을 사용하여 1.8~2.0 순도의 total RNA를 추출하였고 total RNA 값을 microvolume spectrometer를 이 용하여 측정하였다. 추출한 RNA (3 µl)와 oligo (dT) 15 primer (500 µg/ml) 1 µl를 첨가한 후 nuclease free water로 10 µl를 맞추고 75℃에서 5분간 반응시킨다. 이후 5X reaction buffer, MgCl<sub>2</sub>, PCR nucleotide mix, rnasin inhibitor, reverse transcriptase, nuclease free water를 첨가하여 25℃에서 5분, 42℃ 에서 60분, 70℃에서 15분간 반응시켜 cDNA를 합성하였다.

# Reverse transcription-polymerase chain reaction (RT-PCR)

미백관련 인자들인 MITF, TRP-1, TRP-2, tyrosinase와 염증 성 cytokine인 IL-1β, IL-6 및 TNF-α에 대한 mRNA 발현을 알아보기 위하여 RT-PCR을 실시하였으며 실험에 사용한 primer sequences는 Table 1과 같다. PCR tube에 합성한 cDNA 와 5X green GoTaq flexi buffer, MgCl<sub>2</sub>, 10 mM의 PCR nucleotide mix, primer, GoTaq DNA polymerase, nuclease free water를 첨가하여 혼합한 후 PCR을 진행하였다. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), tyrosinase 및 TNF-a는 96℃에서 10초, 64℃에서 30초, 72℃에서 1분(40 cycles), MITF, TRP-1 및 TRP-2는 각각 96℃에서 10초, 56℃에서 30초, 72℃에서 1분(40 cycles), IL-1β와 IL-6는 96℃에서 10초,

Table 1. Sequence of the primers used for RT-PCR

59℃에서 30초, 72℃에서 1분(40 cycles)을 실행하여 PCR로 합성시켰다. 이후 0.002% ethidium bromide (EtBr)을 첨가하 여 제조한 1.5% agarose gel으로 100 V에서 30분 동안 전기영 동 후 UV transilluminator를 이용하여 밴드를 확인하여 분석 정량하였다.

## 결과 및 고찰

### 전자공여능 측정 결과

가장 간편한 항산화 활성 측정방법 중의 하나로 free radical 인 2,2-diphenyl-1-picryhydrazyl (DPPH)를 이용하여 항산화 활성을 측정하는 방법이다. 이러한 방법으로 긴병꽃풀 70% ethanol 추출물을 이용하여 ethyl acetate 분획을 통해 얻은 분획물의 항산화 활성을 확인하기 위해 전자공여능을 측정한 결과, Fig. 1과 같이 나타났으며 ethyl acetate 분획물의 농도가 증가함에 따라 전자공여능이 증가하는 것을 확인할 수 있었 다. 100 μg/ml에서 50% 이상의 활성을 나타내었고 최고 농도 인 1,000 μg/ml에서 89.6%의 효과를 보였다. Oh의 연구[24]에 서 씀바귀 잎 70% ethanol 추출물이 1,000 μg/ml의 농도에서 47.23%의 활성을 나타내었고, Park 등[25]의 연구에서 동일한 농도의 아가위 열매 ethanol 추출물이 85.8%의 활성을 나타낸 다는 결과와 비교하였을 때 다른 추출물에 비해 높은 전자공 여능 활성을 확인할 수 있었다.

## ABTS<sup>+</sup> radical 소거능 측정 결과

ABTS<sup>+</sup> radical scavenging activity assay는 인체 내에서 생 성되는 radical을 대체하여 간접적으로 항산화능을 측정할 수 있는 시험법으로 긴병꽃풀 ethyl acetate 분획물의 ABTS<sup>+</sup> rad-

| Gene       | Primer              | Sequence $(5' \rightarrow 3')$                                        |
|------------|---------------------|-----------------------------------------------------------------------|
| GAPDH      | Sense<br>Anti-sense | TGA AGG TCG GTG TGA ACG GAT TTG GC<br>CAT GTA GGC CAT GAG GTC CAC CAC |
| MITF       | Forward<br>Reverse  | AGC GTG TAT TTT CCC CAC AG<br>TAG CTC CTT AAT GCG GTC GT              |
| TRP-1      | Forward<br>Reverse  | ACT TCA CTC AAG CCA ACT GC<br>AGC TTC CCA TCA GAT GTC GT              |
| TRP-2      | Forward<br>Reverse  | GCT CCA AGT GGC TGT AGA CC<br>AAT GCA GTG GCT TGG AAA TC              |
| Tyrosinase | Forward<br>Reverse  | GAC GGT CAC TGC ACA CTT TG<br>GCC ATG ACC AGG ATG AC                  |
| IL-1β      | Sense<br>Anti-sense | AGG ACA CGA CTG CTT TCT TC<br>GCA CCG CAG TAG GGA AGT GT              |
| IL-6       | Sense<br>Anti-sense | GGC TTT TAA GTG GGG CTG TC<br>CCC AAG ATC CAC TGC AAA TG              |
| TNF-a      | Sense<br>Anti-sense | GAG AGG AAC ACG TTC TGG CTC C<br>TGC TGG AGG CTG AGG CAT CC           |



Fig. 1. Electron donating ability of *Glechoma hederacea* var. *longi-tuba* ethyl acetate fraction. Electron donating ability for *Glechoma hederacea* var. *longituba* ethyl acetate fraction from various concentration was determined with 0.2 mM DPPH ethanolic solution. Each values represents mean ± SD of three individual experiments.

ical 소거능을 측정한 결과, Fig. 2와 같이 나타났다. 분획물의 농도가 증가함에 따라 ABTS<sup>+</sup> radical 소거활성이 증가하였으 며 최고 농도인 1,000 μg/ml에서 88.7%의 소거능을 나타냈다. Hyun 등[6]의 제주 재래종 감귤 홍귤 과피 ethyl acetate 분획 물의 1,000 μg/ml에서 약 90%, Hwang 등[5]의 연구에서 동일 한 농도의 홍마늘 ethyl acetate 분획물이 76.6%의 ABTS<sup>+</sup> radical 소거능을 나타낸다고 보고됨에 따라 긴병꽃풀 ethyl acetate 분획물의 유의한 결과를 확인할 수 있었다.



Tyrosinase 저해활성 측정 결과

Fig. 2. ABTS<sup>+</sup> radical scavenging activity of Glechoma hederacea var. longituba ethyl acetate fraction. ABTS<sup>+</sup> radical scavenging activity for Glechoma hederacea var. longituba ethyl acetate fraction from various concentration was determined with ABTS<sup>+</sup> radical solution. Each values represents mean ± SD of three individual experiments.

인체의 melanin 생합성은 tyrosine을 기질로 하여 tyrosinase에 의해 L-3,4-dihydroxyphenylalanine (L-DOPA)로 변환 되고 효소적 산화반응을 통해 DOPA quinone으로 전환되며, DOPA quinone의 반응에 따라 pheomelanin과 eumelanin이 생성된다[8, 31]. Tyrosinase는 피부 내의 melanin polymer의 생합성 과정에서 rate limiting enzyme로 작용하며 이 enzyme 의 활성을 억제하는 실험은 미백 원료 개발의 1차적인 단계에 서 큰 의미를 갖는다[23].

긴병꽃풀 ethyl acetate 분획물의 tyrosinase 저해활성을 측 정한 결과, Fig. 3과 같이 나타났으며 시료의 농도 의존적으로 저해능이 증가하였으며 100 μg/ml의 농도에서 15%에 가까운 억제활성을 보였고 최고 농도인 1,000 μg/ml에서는 22.3%의 저해활성을 확인할 수 있었다. 기존에 보고된 연구에서는 Kim 등[14]의 섬초롱 80% ethanol 추출물의 ethyl acetate 분획물은 1,000 μg/ml에서 약 25%의 저해활성을 보였으며, 열풍건조 삼채 뿌리 ethyl acetate 분획물이 2,000 μg/ml에서 40.6%의 저해활성을 나타낸다는 Jeong 등[7]의 결과와 비교하였을 때 유의한 결과를 확인할 수 있었다.

### MTT assay에 의한 세포독성 측정 결과

긴병꽃풀 ethyl acetate 분획물에 의한 melanoma cell과 macrophage cell의 생존율을 확인한 결과, Fig. 4, Fig. 5와 같 이 나타났다. 시료용액의 농도가 증가함에 따라 세포의 생존 율이 감소하였으나, 모든 농도구간에서 80% 이상의 세포 생존 율을 확인할 수 있었으며, 특히 macrophage cell에서 95% 이 상의 높은 생존율을 확인할 수 있었다. 따라서 긴병꽃풀 ethyl actate 분획물은 melanoma cell과 macrophage cell에 대해 독 성이 미비하다고 판단하였으며, 이하의 Western blot과 RT-



Fig. 3. Inhibition rate of *Glechoma hederacea* var. *longituba* ethyl acetate fraction on tyrosinase. Inhibition rate of tyrosinase for *Glechoma hederacea* var. *longituba* ethyl acetate fraction from various concentration was determined with 200 U/ml mushroom tyrosinase solution. Each values represents mean ± SD of three individual experiments.



Fig. 4. Cell viability of *Glechoma hederacea* var. *longituba* ethyl acetate fraction on melanoma cell (B16F10). B16F10 cells were incubated for 24 hr in DMEM containing 10% FBS, were treated with various concentrations of *Glechoma hederacea* var. *longituba* ethyl acetate fraction for 24 hr and cell viability was measured by MTT reagent. Each values represents mean ± SD of three individual experiments.

PCR의 실험에서는 melanoma cell과 macrophage cell에서 모 두 90% 이상의 생존율을 나타낸 25, 50, 100 μg/ml의 농도구간 으로 설정하여 실험을 진행하였다.

## Western blot을 통한 MITF, TRP-1, TRP-2, tyrosinase의 단백질 발현에 미치는 영향

긴병꽃풀 ethyl acetate 분획물이 melanin 합성에 관계된 인자인 MITF, TRP-1, TRP-2 및 tyrosinase에 미치는 영향을 알아보기 위하여 B16F10 mouse melanoma cell에 25, 50, 100



Fig. 5. Cell viability of *Glechoma hederacea* var. *longituba* ethyl acetate fraction on macrophage cell (Raw 264.7). Raw 264.7 cells were incubated for 24 hr in DMEM containing 10% FBS, were treated with various concentrations of *Glechoma hederacea* var. *longituba* ethyl acetate fraction for 24 hr and cell viability was measured by MTT reagent. Each values represents mean ± SD of three individual experiments.

µg/ml의 분획물을 농도별로 처리한 후 control은 자극제인 a-MSH를 처리하여 melanin을 과발현시키고, normal 부분에 는 a-MSH를 처리하지 않는 구간으로 설정하였다. 이후 24시 간 뒤에 protein 발현을 Western blotting으로 확인하였으며 이때 세포의 여러 조건에서도 그 발현 정도의 차이가 거의 없는 house keeping gene인 β-actin을 positive control로 사용 하였다. 그 결과, Fig. 6과 같이 긴병꽃풀 ethyl acetate 분획물 을 25, 50, 100 µg/ml의 농도별로 처리한 B16F10 군에서 α-MSH에 의해 증가된 MITF, TRP-1, TRP-2 및 tyrosinase의 단 백질 발현양이 분획물의 농도가 증가함에 따라 감소된 것을 확인할 수 있었다. 특히 대조군인 kojic acid에 비해 MITF와 TRP-2에서 더 높은 단백질 발현 억제율을 확인할 수 있었다.

## Western blot을 통한 Pro-inflammatory cytokine의 단 백질 발현에 미치는 영향

대식세포인 Raw 264.7 세포에서 긴병꽃풀 ethyl acetate 분 획물이 pro-inflammatory cytokine인 IL-1β, IL-6 및 TNF-α의 단백질 발현량에 미치는 영향을 알아보기 위하여 Western blot을 진행하였다. Raw 264.7 cell에 25, 50, 100 μg/ml의 분획 물을 농도별로 처리한 후 control 구간은 염증활성을 과발현시 키기 위해 LPS를 처리하였고, normal 구간에는 LPS를 처리하 지 않았다. 이때 세포의 여러 조건에서도 그 발현 정도의 차이 가 거의 없는 house keeping gene인 β-actin을 positive control로 사용하였으며 그 결과, Fig. 7과 같이 긴병꽃풀 ethyl acetate 분획물이 농도 의존적으로 단백질이 억제됨을 보였으 며, LPS에 의해 증가된 IL-1β, IL-6 및 TNF-α의 단백질 발현양 이 감소된 것을 확인할 수 있었다. 특히 IL-6와 TNF-α의 인자 가 같은 농도의 대조군인 Vit. C에 비해 높은 단백질 억제율을 확인할 수 있었다.

# RT-PCR을 통한 MITF, TRP-1, TRP-2, tyrosinase의 mRNA 발현에 미치는 영향

미백관련 인자인 MITF, TRP-1, TRP-2 및 tyrosinase 인자에 대해 긴병꽃풀 ethyl acetate 분획물이 mRNA 발현양에 미치 는 영향을 측정하기 위해 reverse transcription-PCR을 진행하 였으며 이때 GAPDH을 positive control로 사용하였다. Melanoma cell인 B16F10에 분획물을 25, 50, 100 µg/ml의 농도로 처리하여 진행하였으며, 그 결과 Fig. 8과 같은 결과를 확인할 수 있었다. MITF, TRP-1, TRP-2 및 tyrosinase의 mRNA 발현 양이 분획물의 농도가 증가함에 따라 억제됨을 확인하였으며 대조군인 kojic acid에 비해 MITF와 TRP-1 인자에서 우수한 mRNA 억제를 보였고 tyrosinase에 대해서는 100 µg/ml에서 가장 낮은 29.1%의 발현량을 보여 매우 뛰어난 mRNA 발현 억제를 나타내어 미백 기능성화장품 소재로서의 활용 가능성 을 확인할 수 있었다.



Fig. 6. MITF, TRP-1, TRP-2 and tyrosinase protein expression rate of *Glechoma hederacea* var. *longituba* ethyl acetate fraction on melanoma cell (B16F10). B16F10 cells were incubated for 24 hr in DMEM, were treated with 25, 50 and 100 µg/ml concentration of *Glechoma hederacea* var. *longituba* ethyl acetate fraction for 24 hr and then total protein was isolated. MITF, TRP-1, TRP-2 and tyrosinase protein level was determined by Western blot. CON: control, treated with α-MSH; NOR: normal, not treated with α-MSH. The results were expressed as the average of triplicate samples.



Fig. 7. IL-1β, IL-6, TNF-α protein expression rate of *Glechoma hederacea* var. *longituba* ethyl acetate fraction on macrophage cell (Raw 264.7). Raw 264.7 cells were incubated for 24 hr in DMEM, were treated with 25, 50 and 100 µg/ml concentration of *Glechoma hederacea* var. *longituba* ethyl acetate fraction for 24 hr and then total protein was isolated. IL-1β, IL-6, TNF-α protein level was determined by Western blot. CON: control, treated with LPS; NOR: normal, not treated with LPS. The results were expressed as the average of triplicate samples.



Fig. 8. MITF, TRP-1, TRP-2 and tyrosinase mRNA expression rate of *Glechoma hederacea* var. *longituba* ethyl acetate fraction on melanoma cell (B16F10). B16F10 cells were incubated for 24 hr in DMEM, were treated with 25, 50 and 100 µg/ml concentration of *Glechoma hederacea* var. *longituba* ethyl acetate fraction for 24 hr and then total RNA was isolated. MITF, TRP-1, TRP-2 and tyrosinase mRNA level was determined by RT-PCR. CON: control, treated with α-MSH; NOR: normal, not treated with α-MSH. The results were expressed as the average of triplicate samples.



Fig. 9. IL-1β, IL-6, TNF-α mRNA expression rate of *Glechoma hederacea* var. *longituba* ethyl acetate fraction on macrophage cell (Raw 264.7). Raw 264.7 cells were incubated for 24 hr in DMEM, were treated with 25, 50 and 100 µg/ml concentration of *Glechoma hederacea* var. *longituba* ethyl acetate fraction for 24 hr and then total RNA was isolated. IL-1β, IL-6, TNF-α mRNA level was determined by RT-PCR. CON: control, treated with LPS; NOR: normal, not treated with LPS. The results were expressed as the average of triplicate samples.

## RT-PCR을 통한 Pro-inflammatory cytokine의 mRNA 발현에 미치는 영향

염증유발 인자인 LPS로 염증이 유도된 Raw 264.7 cell에서 긴병꽃풀 ethyl acetate 분획물이 IL-1β, IL-6 및 TNF-α 인자의 mRNA 발현량에 미치는 영향을 RT-PCR을 통해 확인하였다. 이때 GAPDH을 positive control로 사용하였으며, 분획물을 25, 50, 100 μg/ml의 농도로 처리하여 진행하였다. 그 결과, Fig. 9와 같이 나타났으며 긴병꽃풀 ethyl acetate 분획물의 mRNA 발현양이 농도 의존적으로 억제되었으며, IL-6와 TNFa에서 발현양은 50.7%, 42.4%로 같은 농도의 대조군인 Vit. C에 비해 높은 억제율을 나타내었다. 본 연구 결과에 의해 긴 병꽃풀 ethyl acetate 분획물이 염증 억제에 대한 활용 가능성 이 있음을 확인할 수 있었다.

## The Conflict of Interest Statement

The authors declare that they have no conflicts of interest with the contents of this article.

### References

- Blois, M. S. 1958. Antioxidant determination by the use of a stable free radical. *Nature* 181, 1199-1120.
- Carmichael, J., DeGraff, W. G., Gazdar, A. F., Minna, J. D. and Mitchell, H. B. 1987. Evaluation of a tetrazolium based semiautomated colorimetric assay: assessment of chemosensitivity testing. *Cancer Res.* 47, 936-942.
- Cho, Y. H., Kim, H. J., Kim, D. I., Jang, J. Y., Kwak, J. H., Shin, Y. H., Cho, Y. G. and An, B. J. 2015. Effect of garlic (*Allium sativum* L.) stems on inflammatory cytokines, iNOS and COX-2 expressions in Raw 264.7 cells induced by lipopolysaccharide. *Kor. J. Food Preserv.* 22, 613-621.
- Chun, H. J., Hwang, S. G., Lee, J. S., Baek, S. H., Jeon, B. H. and Woo, W. H. 2002. Inhibitory effects of butyl alcohol extract from *Caesalpinia sappan* L. on melanogenesis in melan-a cells. *Kor. J. Pharmacogn.* 33, 130-136.
- Hwang, C. R., Shin, J. H., Kang, M. J., Lee, S. J. and Sung, N. J. 2012. Antioxidant and antiobesity activity of solvent fractions from red garlic. *J. Life Sci.* 22, 950-957
- Hyun, J. M., Park, K. J., Kim, S. S., Park, S. M., Lee, Y. J. and An, H. J. 2015. Antioxidant and anti-inflammatory effects of solvent fractions from the peel of the native Jeju citrus 'Hongkyool' and 'Pyunkyool'. J. Life Sci. 25, 1132-1138.
- Jeong, S. J., Kim, K. H. and Yook, H. S. 2015. Whitening and antioxidant activities of solvent extracts from hot-air dried *Allium hookeri*. J. Kor. Soc. Food Sci. Nutr. 44, 832-839.
- Jo, J. B., Kim, M. U., Lee, E. H., Kim, Y. J., Cho, E. B., Kang, I. K. and Cho, Y. J. 2018. Whitening effect of extracts from *Matricaria chamomilla* L. with B16F10 melanoma cells. *J. Appl. Biol. Chem.* 61, 267-273.
- 9. Jun, Y. J., Lee, S., Heo, S. and Jin, B. S. 2019. Functional characterization of the extracts from Nipa palm, Molokhia,

and Finger root for cosmetic ingredients. J. Kor. Appl. Sci. Technol. 36, 821-829.

- Kim, A. R., Jung, M. C., Jeong, H. I., Song, D. G., Seo, Y. B., Jeon, Y. H., Park, S. H., Shin, H. S., Lee, S. L. and Park, S. N. 2018. Antioxidative and cellular protective effects of Lysimachia christinae Hance extract and fractions. *Appl. Chem. Eng.* 29, 176-184.
- Kim, D. H., Moon, Y. S., Park, T. S., Hwang, J. Y. and Son, J. H. 2013. Potent whitening activity of *Aruncus dioicus* extract in B16F10 melanoma cell by suppression of melanin biosynthesis. *Kor. J. Hort. Sci. Technol.* **31**, 813-820.
- Kim, H. S. and Ko, K. S. 2020. Antioxidant and anti-inflammatory effects of Ginseng berry ethanol extracts as a cosmetic ingredient. *Asian J. Beauty Cosmetol.* 18, 389-387.
- Kim, M. K. and Kim, D. Y. 2015. Anti-inflammatory effect of barley leaf ethanol extract in LPS-stimulated RAW264.7 macrophage. *Kor. J. Food Preserv.* 22, 735-743.
- Kim, M. S., Kim, K. H. and Yook, H. S. 2012. Antioxidative effects of *Campanula takesimana* Nakai extract. J. Kor. Soc. Food Sci. Nutr. 41, 1331-1337.
- Kim, O. K. 2004. Antidiabetic effect of *Glechoma hederacea* LINNAEUS in streptozotocin-induced diabetic rats. *Kor. J. Pharmacogn.* 34, 300-308.
- Kim, P. K., Jung, K. I., Choi, Y. J. and Gal, S. W. 2017. Anti-inflammatory effects of lemon myrtle (*Backhousia cit-riodora*) leaf extracts in LPS-induced RAW 264.7 cells. *J. Life Sci.* 27, 986-993.
- Kim, S., Kim, H. Y., Hwang, K. H. and Chun, I. J. 2008. Herbicidal activity of essential oil from *Glechoma hederacea*. *Kor. J. Weed Sci.* 28, 152-160.
- Lee, E. J., Seo, Y. M., Kim, Y. H., Chung, C., Sung, H. J., Sohn, H. Y., Park, J. Y. and Kim, J. S. 2019. Anti-inflammatory activities of ethanol extracts of dried Lettuce (*Lactuca sativa* L.). J. Life Sci. 29, 325-331.
- Lee, G. W., Lee, J. Y. and Cho, Y. H. 2010. Whitening effect of the extracts from *Juglans mandshurica*. *KSBB J.* 25, 18-24.
- Lee, H. J. 2004. Inhibitory effect of nitric oxide production of Lysimachiae christinae. Master's Thesis Dissertation, Wonkwang University, Jeonrabukdo, Korea.
- Lee, H. J. and Lim, M. H. 2020. Whitening activities of extracts of seomaeyakssuk (*Artemisia argyi H.*). J. Kor. Appl. Sci. Technol. 37, 241-249.
- Lim, S. B., Park, K. T., Lee, E. H., Kim, B. O., Lee, S. H., Kang, I. K. and Cho, Y. J. 2017. Quality characteristics and biological activity of *Yanggaeng* with *Glechoma hederacea* var. *longituba* Nakai powder. *Kor. J. Food Preserv.* 24, 206-214.
- Lee, S. H., Kim, S. Y., Kim, J. J., Jang, T. S. and Chung, S. R. 1999. The isolation of the inhibitory constitutents on melanin polymer formation from the leaves of *Cercis chinensis. Kor. J. Pharmacogn.* **30**, 397-403.
- Oh, H. K. 2020. Antioxidant and anti-inflammatory activities of different parts of *Ixeris dentata* according to extract methods. J. Kor. Appl. Sci. Technol. 37, 1567-1574.
- Park, S. J., Kwon, S. P. and Rha, Y. A. 2017. Antioxidative activities and whitening effects of ethanol extract from *Crataegus pinnatifida* bunge fruit. J. Kor. Soc. Food Sci. Nutr.

Journal of Life Science 2022, Vol. 32. No. 3 231

46, 1158-1163.

- Park, Y. H., Lim, S. H., Kim, H. Y., Kim, K. H. and Kim, S. 2009. Comparison of compounds on the essential oil in *G. hederacea* var. *longituba* Nakai by fertilizer treatment. *Kor. J. Hort. Sci. Technol.* 27, 171.
- Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. and Rice-Evans, C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. *Free Radic. Biol. Med.* 26, 1231-1237.
- Sim, J. H., Lee, K. M., Park, T., Kang, M. S., Hong, H. and Kim, S. Y. 2021. Biorenovation-assisted modifiction of *Ligustrum japonicum* extract for skin-whitening effect. *KSBB J.* 36, 30-35.
- Woo, H. S., Lee, S. M., Heo, J. D., Lee, M. S., Kim, Y. S. and Kim, D. W. 2018. Anti-inflammatory activity of extracts of *Hovenia dulcis* on lipopolysaccharides-stimulated RAW 264.7 cells. *Kor. J. Plant Res.* **31**, 466-477.
- Yagi, A., Kanbara, T. and Morinobu, N. 1987. Inhibition of mushroom-tyrosinase by Aloe extract. *Planta Med.* 53, 515-517.
- You, S. H. 2017. Antioxidant activity and whitening activity of *Psidium guajava* leaf extract. J. Oil Appl. Sci. 34, 296-304.
- Yu, H. A. and Kim, C. D. 2017. Applicability of *Lindera obtu*siloba flower extracts as cosmetic ingredients. *Asian J. Beauty Cosmetol.* 15, 132-144.

## 초록 : 긴병꽃풀(Glechoma hederacea var. longituba) ethyl acetate 분획물의 항염증 활성 및 B16F10 세포의 멜라닌 생성에 미치는 영향

염현지<sup>1</sup>·오민정<sup>1</sup>·채정우<sup>2</sup>·이진영<sup>1\*</sup> (<sup>1</sup>호서대학교 화장품생명공학부, <sup>2</sup>경기도산림환경연구소)

본 연구는 긴병꽃풀 ethyl acetate 분획물의 미백 및 항염증 활성 검증을 통해 화장품 소재로서의 활용 가능성을 확인하고자 하였다. 전자공여능과 ABTS<sup>+</sup> radical 소거능 측정 결과 최고 농도인 1,000 µg/ml에서 각각 89.6%, 88.7%의 활성을 확인할 수 있었다. Tyrosinase 저해활성 측정 결과 최고 농도인 1,000 µg/ml에서 ethyl acetate 분획물은 22.3%의 억제활성을 나타내었다. 세포 생존율 측정 결과, 멜라노마 세포와 대식세포에 대해 긴병꽃풀 ethyl acetate 분획물을 처리한 모든 구간에서 80% 이상의 생존율을 보였다. 긴병꽃풀 ethyl acetate 분획물의 단백 질 및 mRNA 발현량을 측정하기 위한 western blot과 RT-PCR의 농도구간은 25, 50, 100 µg/ml으로 설정하였다. 그 결과 분획물의 농도가 증가함에 따라 발현양이 감소됨을 확인하였으며 미백관련 인자 MITF와 TRP-2의 단백질 발현 억제율이 대조군인 kojic acid에 비해 우수하였고, tyrosinase에 대해서는 100 µg/ml에서 29.1%의 가장 낮은 발현량을 보여 매우 뛰어난 mRNA 발현 억제를 확인할 수 있었다. Pro-inflammatory cytokine인 IL-1β, IL-6 및 TNF-α의 단백질 및 mRNA 발현량에 미치는 영향을 확인한 결과, IL-6와 TNF-α의 인자가 같은 농도의 대조군인 Vit. C에 비해 높은 단백질 및 mRNA 억제율을 나타내었다. 이러한 실험결과를 기반으로 긴병꽃풀 ethyl acetate 분획물이 기능성 소재로서의 활용 가능성을 확인함으로써 화장품에 천연 소재로서 응용할 수 있을 것이라 판단되 었다.