DOI QR코드

DOI QR Code

Composition and Diversity of Salivary Microbiome Affected by Sample Collection Method

  • Lee, Yeon-Hee (Department of Orofacial Pain and Oral Medicine, Kyung Hee University Dental Hospital, Kyung Hee University School of Dentistry) ;
  • Hong, Ji-Youn (Department of Periodontology, Periodontal-Implant Clinical Research Institute, Kyung Hee University School of Dentistry) ;
  • Lee, Gi-Ja (Department of Biomedical Engineering, Kyung Hee University)
  • Received : 2021.12.29
  • Accepted : 2022.01.14
  • Published : 2022.03.30

Abstract

Purpose: The purpose of this study was to investigate whether various saliva collection methods affect the observed salivary microbiome and whether microbiomes of stimulated and unstimulated saliva and plaque differ in richness and diversity. Methods: Seven sampling methods for unstimulated saliva, stimulated saliva, and plaque samples were applied to six orally and systemically healthy participants. Bacterial 16S ribosomal RNA genes of 10 major oral bacterial species, namely, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, Fusobacterium nucleatum, Prevotella intermedia, Prevotella nigrescens, Streptococcus mitis, Streptococcus sobrinus, and Lactobacillus casei, were analyzed by real-time polymerase chain reaction. We comprehensively examined the dependence of the amount of bacterial ribosomal DNA (rDNA), bacterial-community composition, and relative abundance of each species on sample collection methods. Results: There were significant differences in the bacterial rDNA copy number depending on the collection method in three species: F. nucleatum, P. nigrescens, and S. mitis. The species with the highest richness was S. mitis, with the range from 89.31% to 100.00%, followed by F. nucleatum, P. nigrescens, T. denticola, T. forsythia, and P. intermedia, and the sum of the proportions of the remaining five species was less than 1%. The species with the lowest observed richness was P. gingivalis (<0.1%). The Shannon diversity index was the highest in unstimulated saliva collected with a funnel (4.449). The Shannon diversity index was higher in plaque samples (3.623) than in unstimulated (3.171) and stimulated (3.129) saliva and in mouthwash saliva samples (2.061). Conclusions: The oral microbial profile of saliva samples can be affected by sample collection methods, and saliva differs from plaque in the microbiome. An easy and rapid technique for saliva collection is desirable; however, observed microbial-community composition may more accurately reflect the actual microbiome when unstimulated saliva is assayed.

Keywords

Acknowledgement

This work was supported by a National Research Foundation of Korea funded by the Korean government under Grant number NRF/2020R1F1A1070072 to (Y.H.L); and the Korea Medical Device Development Fund funded by the Korean government (the Ministry of Science and ICT, the Ministry of Trade, Industry and Energy, the Ministry of Health & Welfare, and the Ministry of Food and Drug Safety, Republic of Korea) under Project number KMDF_PR_20200901_0023, 9991006696.

References

  1. Lee YH, Chung SW, Auh QS, et al. Progress in oral microbiome related to oral and systemic diseases: an update. Diagnostics (Basel) 2021;11:1283. https://doi.org/10.3390/diagnostics11071283
  2. Lamont RJ, Koo H, Hajishengallis G. The oral microbiota: dynamic communities and host interactions. Nat Rev Microbiol 2018;16:745-759. https://doi.org/10.1038/s41579-018-0089-x
  3. Lu M, Xuan S, Wang Z. Oral microbiota: a new view of body health. Food Sci Hum Wellness 2019;8:8-15. https://doi.org/10.1016/j.fshw.2018.12.001
  4. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 2005;43:5721-5732. https://doi.org/10.1128/JCM.43.11.5721-5732.2005
  5. Faran Ali SM, Tanwir F. Oral microbial habitat a dynamic entity. J Oral Biol Craniofac Res 2012;2:181-187. https://doi.org/10.1016/j.jobcr.2012.07.001
  6. Belstrom D, Fiehn NE, Nielsen CH, et al. Differences in bacterial saliva profile between periodontitis patients and a control cohort. J Clin Periodontol 2014;41:104-112. https://doi.org/10.1111/jcpe.12190
  7. Belstrom D, Fiehn NE, Nielsen CH, et al. Differentiation of salivary bacterial profiles of subjects with periodontitis and dental caries. J Oral Microbiol 2015;7:27429. https://doi.org/10.3402/jom.v7.27429
  8. Simon-Soro A, Tomas I, Cabrera-Rubio R, Catalan MD, Nyvad B, Mira A. Microbial geography of the oral cavity. J Dent Res 2013;92:616-621. https://doi.org/10.1177/0022034513488119
  9. Dasanayake AP, Caufield PW, Cutter GR, Roseman JM, Kohler B. Differences in the detection and enumeration of mutans streptococci due to differences in methods. Arch Oral Biol 1995;40:345-351. https://doi.org/10.1016/0003-9969(94)00164-7
  10. Asikainen S, Alaluusua S, Saxen L. Recovery of A. actinomycetemcomitans from teeth, tongue, and saliva. J Periodontol 1991;62:203-206. https://doi.org/10.1902/jop.1991.62.3.203
  11. Choi H, Kim E, Kang J, et al. Real-time PCR quantification of 9 periodontal pathogens in saliva samples from periodontally healthy Korean young adults. J Periodontal Implant Sci 2018;48:261-271. https://doi.org/10.5051/jpis.2018.48.4.261
  12. Kralik P, Ricchi M. A basic guide to real time PCR in microbial diagnostics: definitions, parameters, and everything. Front Microbiol 2017;8:108.
  13. Jung JY, Yoon HK, An S, et al. Rapid oral bacteria detection based on real-time PCR for the forensic identification of saliva. Sci Rep 2018;8:10852. https://doi.org/10.1038/s41598-018-29264-2
  14. Flink H, Bergdahl M, Tegelberg A, Rosenblad A, Lagerlof F. Prevalence of hyposalivation in relation to general health, body mass index and remaining teeth in different age groups of adults. Community Dent Oral Epidemiol 2008;36:523-531. https://doi.org/10.1111/j.1600-0528.2008.00432.x
  15. Iorgulescu G. Saliva between normal and pathological. Important factors in determining systemic and oral health. J Med Life 2009;2:303-307.
  16. Flink H, Tegelberg A, Lagerlof F. Influence of the time of measurement of unstimulated human whole saliva on the diagnosis of hyposalivation. Arch Oral Biol 2005;50:553-559. https://doi.org/10.1016/j.archoralbio.2004.10.015
  17. Ifo SA, Moutsambote JM, Koubouana F, et al. Tree species diversity, richness, and similarity in intact and degraded forest in the tropical rainforest of the Congo basin: case of the forest of Likouala in the Republic of Congo. Int J For Res 2016;2016:7593681.
  18. Belstrom D, Holmstrup P, Bardow A, Kokaras A, Fiehn NE, Paster BJ. Comparative analysis of bacterial profiles in unstimulated and stimulated saliva samples. J Oral Microbiol 2016;8:30112. https://doi.org/10.3402/jom.v8.30112
  19. Schafer CA, Schafer JJ, Yakob M, Lima P, Camargo P, Wong DT. Saliva diagnostics: utilizing oral fluids to determine health status. Monogr Oral Sci 2014;24:88-98. https://doi.org/10.1159/000358791
  20. Gomar-Vercher S, Simn-Soro A, Montiel-Company JM, Almerich-Silla JM, Mira A. Stimulated and unstimulated saliva samples have significantly different bacterial profiles. PLoS One 2018;13:e0198021. https://doi.org/10.1371/journal.pone.0198021
  21. Caselli E, Fabbri C, D'Accolti M, Soffritti I, Bassi C, Mazzacane S, Franchi M. Defining the oral microbiome by whole-genome sequencing and resistome analysis: the complexity of the healthy picture. BMC Microbiol 2020;20:120. https://doi.org/10.1186/s12866-020-01801-y
  22. Sembler-Moller ML, Belstrom D, Locht H, Enevold C, Pedersen AML. Next-generation sequencing of whole saliva from patients with primary Sjogren's syndrome and non-Sjogren's sicca reveals comparable salivary microbiota. J Oral Microbiol 2019;11:1660566. https://doi.org/10.1080/20002297.2019.1660566
  23. Motro Y, Moran-Gilad J. Next-generation sequencing applications in clinical bacteriology. Biomol Detect Quantif 2017;14:1-6. https://doi.org/10.1016/j.bdq.2017.10.002
  24. Abranches J, Zeng L, Kajfasz JK, et al. Biology of oral streptococci. Microbiol Spectr 2018;6:10.1128/microbiolspec.GPP3-0042-2018
  25. Rinninella E, Raoul P, Cintoni M, et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 2019;7:14. https://doi.org/10.3390/microorganisms7010014
  26. Engen SA, Rorvik GH, Schreurs O, Blix IJ, Schenck K. The oral commensal Streptococcus mitis activates the aryl hydrocarbon receptor in human oral epithelial cells. Int J Oral Sci 2017;9:145-150. https://doi.org/10.1038/ijos.2017.17
  27. Lynge Pedersen AM, Belstrom D. The role of natural salivary defences in maintaining a healthy oral microbiota. J Dent 2019;80 Suppl 1:S3-S12. https://doi.org/10.1016/j.jdent.2018.08.010
  28. Oscarsson J, Claesson R, Lindholm M, Hoglund Aberg C, Johansson A. Tools of Aggregatibacter actinomycetemcomitans to evade the host response. J Clin Med 2019;8:1079. https://doi.org/10.3390/jcm8071079
  29. Kesavalu L, Sathishkumar S, Bakthavatchalu V, et al. Rat model of polymicrobial infection, immunity, and alveolar bone resorption in periodontal disease. Infect Immun 2007;75:1704-1712. https://doi.org/10.1128/IAI.00733-06
  30. How KY, Song KP, Chan KG. Porphyromonas gingivalis: an overview of periodontopathic pathogen below the gum line. Front Microbiol 2016;7:53. https://doi.org/10.3389/fmicb.2016.00053
  31. Griffen AL, Becker MR, Lyons SR, Moeschberger ML, Leys EJ. Prevalence of Porphyromonas gingivalis and periodontal health status. J Clin Microbiol 1998;36:3239-3242. https://doi.org/10.1128/JCM.36.11.3239-3242.1998
  32. Guven DC, Dizdar O, Alp A, et al. Analysis of Fusobacterium nucleatum and Streptococcus gallolyticus in saliva of colorectal cancer patients. Biomark Med 2019;13:725-735. https://doi.org/10.2217/bmm-2019-0020
  33. Segata N, Haake SK, Mannon P, et al. Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome Biol 2012;13:R42. https://doi.org/10.1186/gb-2012-13-6-r42
  34. Moon JH, Lee JH, Lee JY. Subgingival microbiome in smokers and non-smokers in Korean chronic periodontitis patients. Mol Oral Microbiol 2015;30:227-241. https://doi.org/10.1111/omi.12086
  35. Kuriyama T, Nakagawa K, Kawashiri S, Yamamoto E, Nakamura S, Karasawa T. The virulence of mixed infection with Streptococcus constellatus and Fusobacterium nucleatum in a murine orofacial infection model. Microbes Infect 2000;2:1425-1430. https://doi.org/10.1016/S1286-4579(00)01296-X
  36. Settem RP, El-Hassan AT, Honma K, Stafford GP, Sharma A. Fusobacterium nucleatum and Tannerella forsythia induce synergistic alveolar bone loss in a mouse periodontitis model. Infect Immun 2012;80:2436-2443. https://doi.org/10.1128/IAI.06276-11
  37. Kamma JJ, Nakou M, Manti FA. Microbiota of rapidly progressive periodontitis lesions in association with clinical parameters. J Periodontol 1994;65:1073-1078. https://doi.org/10.1902/jop.1994.65.11.1073
  38. Moraes LC, Fatturi-Parolo CC, Ferreira MB, So MV, Montagner F. Saliva, supragingival biofilm and root canals can harbor gene associated with resistance to lactamic agents. Braz Oral Res 2015;29:52.
  39. Conrads G, de Soet JJ, Song L, et al. Comparing the cariogenic species Streptococcus sobrinus and S. mutans on whole genome level. J Oral Microbiol 2014;6:26189. https://doi.org/10.3402/jom.v6.26189
  40. Ingrassia I, Leplingard A, Darfeuille-Michaud A. Lactobacillus casei DN-114 001 inhibits the ability of adherent-invasive Escherichia coli isolated from Crohn's disease patients to adhere to and to invade intestinal epithelial cells. Appl Environ Microbiol 2005;71:2880-2887. https://doi.org/10.1128/AEM.71.6.2880-2887.2005