DOI QR코드

DOI QR Code

Comparison of Natural Polymer Based Gel Electrolytes in Flexible Zinc-Air Batteries

플랙서블 아연-공기전지를 위한 천연 고분자 젤 전해질의 전기화학적 거동 비교

  • Byeong Jin, Jeong (Department of Advanced Materials & Chemical Engineering, College of Engineering, Halla University) ;
  • Yong Nam, Jo (Department of Advanced Materials & Chemical Engineering, College of Engineering, Halla University)
  • 정병진 (한라대학교 공과대학 신소재화학공학과) ;
  • 조용남 (한라대학교 공과대학 신소재화학공학과)
  • Received : 2022.11.18
  • Accepted : 2022.12.06
  • Published : 2022.12.27

Abstract

Flexible zinc-air batteries have many merits, including low cost, high safety, environmentally friendliness applicability, etc. One of the key factors to improve the performance of flexible zinc-air batteries is to use a gel electrolyte. In this study, gel electrolytes were synthesized from potato, sweet potato, and corn starch. In a comparison of each starch, the corn starch-based gel electrolyte showed the highest discharge capacity of 12.41 mAh/cm2 in 20 mA and 6.47 mAh/cm2 in 30 mA. It also delivered a higher specific discharge capacity of 7.06 mAh/cm2 than the other materials after 100° bending. In addition, the electrochemical impedance spectroscopy (EIS) was analyzed to calculate the ionic conductivity. The potato, sweet potato, and corn starch-based gel electrolytes showed electrolyte resistances (Re) of 0.306, 0.298, and 0.207 Ω, respectively. In addition, the corn starch-based gel electrolyte delivered the highest ionic conductivity of 0.121 S cm-1 among the other gel electrolytes. Thus, the corn starch-based gel electrolyte was verified to improve the performance of flexible zinc-air batteries.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1G1A1007782).

References

  1. Z. Y. Fan, E. M. Jin and S. M. Jeong, Korean Chem. Eng. Res., 55, 861 (2017).
  2. Y. J. Shin, W. Y. Lee, T. Y. Kim, S. G. Moon, E. M. Jin and S. M. Jeong, Korean Chem. Eng. Res., 60, 184 (2022).
  3. S. H. Joo, S. R. Lee, W. I. Cho and B. W. Cho, Korea. J. Mater. Res., 19, 73 (2009).
  4. A. Sumboja, X. Ge, Y. Zong and Z. Liu, Funct. Mater. Lett., 9, 1630001 (2016). https://doi.org/10.1142/s1793604716300012
  5. Q. Liu, Z. Chang, Z. Li and X. Zhang, Small Methods, 2, 1700231 (2017).
  6. Y. K. Jeon, O. C. Kwon, Y. S. Ji, O. S. Jeon, C. M. Lee and Y. G. Shul, Korean Chem. Eng. Res., 57, 425 (2019).
  7. Y. N. Jo, S. H. Kang, K. Prasanna, S. W. Eom and C. W. Lee, Appl. Surf. Sci., 422, 406 (2017).
  8. Y. N. Jo, K. Prasanaa, S. H. Kang, P. R. Ilango, H. S. Kim, S. W. Eom and C. W. Lee, J. Ind. Eng. Chem., 53, 247 (2017).
  9. J. E. Park and Y. N. Jo, Korean J. Mater. Res., 29, 812 (2019).
  10. M. S. Jeong and Y. N. Jo, Korean J. Mater. Res., 30, 709 (2020).
  11. I. H. Yoo and H. T. Seo, Korean J. Mater. Res., 26, 241 (2016).
  12. J. Shi and B. Shi, Nano, 16, 2130006 (2021).
  13. T. N. T. Tran, H. J. Chung and D. G. Lvey, Electrochim. Acta, 327, 135021 (2019).
  14. S. Qu, Z. Song, J. Liu, Y. Li, Y. Kou, C. Ma, X. Han, Y. Deng, N. Zhao, W. Hu and C. Zhong, Nano Energy, 39, 101 (2017).
  15. A. R. M. Zahid, M. N. Masri, M. H. Hussin and M. B. Abu Bakar, AIP Conference Proceedings 2030, 020278 (2018).
  16. A. S. Asmad Khiar and A. K. Arof, Ionics, 16, 123 (2010).
  17. E. Czamecka and J. Nowaczyk, Polymers, 12, 1794 (2020). https://doi.org/10.3390/polym12020276
  18. H. Liu, L. Yu, F. Xie and L. Chen, Carbohydr. Polym., 65, 357 (2006).