DOI QR코드

DOI QR Code

이온층 에피택시법을 이용한 ZnO/Zn(OH)2 나노시트의 합성

Synthesis of ZnO/Zn(OH)2 Nanosheets Using Ionic Layer Epitaxy

  • 정규현 (경상국립대학교 나노신소재공학부 세라믹공학전공) ;
  • 남동현 (경상국립대학교 나노신소재공학부 세라믹공학전공) ;
  • 류경희 (경상국립대학교 나노신소재공학부 세라믹공학전공)
  • Jeong, Gyu Hyun (School of Materials Science and Engineering, Gyeongsang National University) ;
  • Nam, Dong Hyun (School of Materials Science and Engineering, Gyeongsang National University) ;
  • Ryu, Gyeong Hee (School of Materials Science and Engineering, Gyeongsang National University)
  • 투고 : 2022.02.21
  • 심사 : 2022.03.14
  • 발행 : 2022.03.27

초록

ZnO nanosheets have been used for many devices and antibacterial materials with wide bandgap and high crystallinity. Among the many methods for synthesizing ZnO nanostructures, we report the synthesis of ZnO/Zn(OH)2 nanosheets using the ionic layer epitaxy method, which is a newly-developed bottom-up technique that allows the shape and thickness of ZnO/Zn(OH)2 nanosheets to be controlled by temperature and time of synthesis. Results were analyzed by scanning electron microscopy and atomic force microscopy. The physical and chemical information and structural characteristics of ZnO/Zn(OH)2 nanosheets were compared by X-ray photoelectron spectroscopy and X-ray diffraction patterns after various post-treatment processes. The crystallinity of the ZnO/Zn(OH)2 nanosheets was confirmed using scanning transmission electron microscopy. This study presents details of the control of the size and thickness of synthesized ZnO/Zn(OH)2 nanosheets with atomic layers.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1G1A1099542). This research was supported by Nano·Material Technology Development Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT and Future Planning (2009-0082580). This results was supported by "Regional Innovation Strategy (RIS)" through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE) (2021RIS-003).

참고문헌

  1. S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev and A. Kis, Nat. Rev. Mater., 2, 17033 (2017). https://doi.org/10.1038/natrevmats.2017.33
  2. T. Hu, X. Mei, Y. Wang, X. Weng, R. Liang and M. Wei, Sci. Bull., 64, 1707 (2019). https://doi.org/10.1016/j.scib.2019.09.021
  3. X. Yin, Y. Shi, Y. Wei, Y. Joo, P. Gopalan, I. Szlufarska and X. Wang, Langmuir, 33, 7708 (2017). https://doi.org/10.1021/acs.langmuir.7b01674
  4. F. Wang, X. Yin and X. Wang, Extreme Mech. Lett., 7, 64 (2016). https://doi.org/10.1016/j.eml.2016.01.003
  5. V. W. Brar, A. R. Koltonow and J. Huang, ACS Photonics, 4, 407 (2017). https://doi.org/10.1021/acsphotonics.7b00194
  6. P. J. P. Espitia, N. D. F. F. Soares, J. S. D. R. Coimbra, N. J. D. Andrade, R. S. Cruz and E. A. A. Medeiros, Food Bioprocess Technol., 5, 1447 (2012). https://doi.org/10.1007/s11947-012-0797-6
  7. R. F. Service, Science, 276, 895 (1997). https://doi.org/10.1126/science.276.5314.895
  8. H. Zhang, D. Yang, X. Ma, Y. Ji, J. Xu and D. Que, Nanotechnology, 15, 622 (2004). https://doi.org/10.1088/0957-4484/15/5/037
  9. K. Keis, E. Magnusson, S.-E. Lindquist, A. Hagfeldt and H. Lindstrom, Sol. Energy Mater. Sol. Cells, 73, 51 (2002). https://doi.org/10.1016/S0927-0248(01)00110-6
  10. V. C. Sousa, A. M. Segadaes, M. R. Morelli and R. H. G. A. Kiminami, Int. J. Inorg. Mater., 1, 235 (1999). https://doi.org/10.1016/S1466-6049(99)00036-7
  11. D. S. King and R. M. Nix, J. Catal., 160, 76 (1996). https://doi.org/10.1006/jcat.1996.0125
  12. W. J. E. Beek, M. M. Wienk and R. A. J. Janssen, Adv. Mater., 16, 1009 (2004). https://doi.org/10.1002/adma.200306659
  13. W. J. E. Beek, M. M. Wienk and R. A. J. Janssen, J. Mater. Chem., 15, 2985 (2005). https://doi.org/10.1039/b501979f
  14. A. Qurashi, N. Tabet, M. Faiz and T. Yamzaki, Nanoscale Res. Lett., 4, 948 (2009). https://doi.org/10.1007/s11671-009-9317-7
  15. X. J. Zheng, X. C. Cao, J. Sun, B. Yuan, Q. H. Li, Z. Zhu and Y. Zhang, Nanotechnology, 22, 435501 (2011). https://doi.org/10.1088/0957-4484/22/43/435501
  16. S.-M. Li, L.-X. Zhang, M.-Y. Zhu, G.-J. Ji, L.-X. Zhao and J. Y. L.-J. Bie, Sensors Actuators B, 249, 611 (2017). https://doi.org/10.1016/j.snb.2017.04.007
  17. D. X. Ju, H. Y. Xu, J. Zhang, J. Guo and B. Cao, Sensors Actuators B, 201, 444 (2014). https://doi.org/10.1016/j.snb.2014.04.072
  18. G. Ficociello, E. Zanni, S. Cialfi, C. Aurizi, G. Biolcati, C. Palleschi, C. Talora and D. Uccelletti, Biochim. Biophys. Acta, 1863, 2650 (2016). https://doi.org/10.1016/j.bbamcr.2016.08.002
  19. E. Zanni, C. Laudenzi, E. Schifano, C. Palleschi, G. Perozzi, D. Uccelletti and C. Devirgiliis, Hindawi Publishing Corporation Biomed. Res. Int., 2015, 12 (2015).
  20. M. Salavati-Niasari, F. Davar and A. Khansar, J. Alloys Compd., 509, 61 (2011). https://doi.org/10.1016/j.jallcom.2010.08.060
  21. E. Zanni, C. R. Chandraiahgari, G. D. Bellis, M. R. Montereali, G. Armiento, P. Ballirano, A. Polimeni, M. S. Sarto and D. Uccelletti, Nanomaterials, 6, 179 (2016). https://doi.org/10.3390/nano6100179
  22. K. Malachova, P. Prausb, Z. Rybkova and O. Kozak, Appl. Clay Sci., 53, 642 (2011). https://doi.org/10.1016/j.clay.2011.05.016
  23. A. Sirelkhatim, S. Mahmud, A. Seeni, N. H. M. Kaus, L. C. Ann, S. K. M. Bakhori, H. Hasan and D. Mohamad, Nano Micro Lett., 7, 219 (2015). https://doi.org/10.1007/s40820-015-0040-x
  24. S.-Y. Pung, K.-L. Choy and X. Hou, J. Cryst. Growth, 312, 2049 (2010). https://doi.org/10.1016/j.jcrysgro.2010.03.035
  25. D. Ehrentraut, H. Sato, Y. Kagamitani, H. Sato, A. Yoshikawa and T. Fukuda, Prog. Cryst. Growth Charact. Mater., 52, 280 (2006). https://doi.org/10.1016/j.pcrysgrow.2006.09.002
  26. T. Ivanova, A. Harizanova, T. Koutzarova and B. Vertruyen, Mater. Lett., 64, 1147 (2010). https://doi.org/10.1016/j.matlet.2010.02.033
  27. C. C. Chen, P. Liu and C. H. Lu, Chem. Eng. J., 144, 509 (2008). https://doi.org/10.1016/j.cej.2008.07.047
  28. X. Li, G. He, G. Xiao, H. Liu and M. Wang, J. Colloid Interface Sci., 333, 465 (2009). https://doi.org/10.1016/j.jcis.2009.02.029
  29. S. Baruah and J. Dutta, Sci. Technol. Adv. Mater., 10, 013001 (2009). https://doi.org/10.1088/1468-6996/10/1/013001
  30. A. K. Zak, W. H. A. Majid, H. Z. Wang, R. Yousefi, A. M. Golsheikh and Z. F. Ren, Ultrason. Sonochem., 20, 395 (2013). https://doi.org/10.1016/j.ultsonch.2012.07.001
  31. R. Al-Gaashani, S. Radiman, A. R. Daud, N. Tabet and Y. Al-Douri, Ceram. Int., 39, 2283 (2013). https://doi.org/10.1016/j.ceramint.2012.08.075
  32. X. Yin, Y. Shi, Y. Wei, Y. Joo, P. Gopalan, I. Szlufarska and X. Wang, Langmuir, 33, 7708 (2017). https://doi.org/10.1021/acs.langmuir.7b01674
  33. X. Yin, Q. Chen, P. Tian, P. Zhang, Z. Zhang, P. M. Voyles and X. Wang, Chem. Mater., 30, 3308 (2018). https://doi.org/10.1021/acs.chemmater.8b00575
  34. Y. Wang, Y. Shi, Z. Zhang, C. Carlos, C. Zhang, K. Bhawnani, J. Li, J. Wang, P. M. Voyles, I. Szlufarska and X. Wang, Chem. Mater., 31, 9040 (2019). https://doi.org/10.1021/acs.chemmater.9b03307