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ABSTRACT. In this work, the three-step intermixed iteration for two finite families of non-
linear mappings is introduced. We prove a strong convergence theorem for approximating
a common fixed point of a strict pseudo-contraction and strictly pseudononspreading map-
ping in a Hilbert space. Some additional results are obtained. Finally, a numerical example
in a space of real numbers is also given and illustrated.

1. Introduction

Let C' be a nonempty closed convex subset of a real Hilbert space H. The fixed
point problem for the mapping 7' : C' — C'is to find x € C such that

z="Tz.
We denote the fixed point set of a mapping T" by Fiz(T).

Definition 1.1. Let T': C' — C be a mapping. Then

(i) a mapping T is called nonexpansive if

1Tz =Tyl <z =yl ,Vo,y € C;
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(ii) T is said to be k-strictly pseudo-contractive if there exists a constant k € [0, 1)
such that

1Tz = Ty|* < |lo = y|* + 5 |(I = T)x — (I = T)y||* ,Ya,y € C.

Note that the class of k-strict pseudo-contractions strictly includes the class
of nonexpansive mappings, that is, a nonexpansive mapping is a O-strictly pseudo-
contractive mapping.

In 2008, Kohsaka and Takahashi [6] introduced a nonspreading mapping T in
Hilbert space H as follows:

(1.1) 2|7z — Tyl* < ||Tx - y|* + o — Ty||*,Va,y € C.

In 2009, it is shown by Iemoto and Takahashi [2] that (1.1) is equivalent to the
following equation.

[Tz — Ty||* < ||z — y||* +2(x — Ta,y — Ty), for all z,y € C.

Later, in 2011, Osilike and Isiogugu [13] proposed a &-strictly pseudononspread-
ing mapping, that is, a mapping T : C' — C' is said to be a k-strictly pseudonon-
spreading mapping if there exists k € [0,1) such that

[Tz =Ty|?* < |lz—y|*+xl| (I -T)z— (I =T)y|*+2(x—Tx,y~Ty), for all 2,y € C.

Obviously, every nonspreading mapping is a k-strictly pseudononspreading map-
ping, that is, a nonspreading mapping is a 0-stricly pseudononspreading mapping.

Many mathematicians tried to proposed iterative algorithms and proved the
strong convergence theorems for a nonspreading mapping and a strictly pseudonon-
spreading mapping in Hilbert space to find their fixed points, see, for instance,
[7, 13, 8, 1].

Over the past decades, many others have constructed various types of iterative
methods to approximate fixed points. The first one is the Mann iteration introduced
by Mann [9] in 1953 and is defined as follows:

(1.2) xg € H arbitrary chosen,
' Tpt1 = (1 —ap) xp + Ty, Y > 0,

where C' is a nonempty closed convex subset of a normed space, T : C' — C is a
mapping and the sequence {e, } is in the interval (0,1). But this algorithm has only
weak convergence. Thus, many mathematicians have been trying to modify Mann’s
iteration (1.2) and construct new iterative method to obtain the strong convergence
theorem.

By modification of Mann’s iteration (1.2), the next iteration process is referred
to as Ishikawa’s iteration process [3] which is defined recursively as follows:

xo € H arbitrary chosen,

(13) Yn = BrTn + (1 - Bn) Ty,
Tnt+l = QnTp + (1 - an) TymVn >0,
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where {a,,} and {8,} are real sequences in [0, 1]. He also obtain the strong conver-
gence theorem for the iterative method (1.3) converging to a fixed point of mapping
T. Observe that if 3, = 1, then the Ishikawa’s iteration (1.3) reduces to the Mann’s
iteration (1.2).

In 2000, Moudafi [11] introduced the viscosity approximation method for non-
expansive mapping S as follows:
Let C be a closed convex subset of a real Hilbert space H and let S : C' — C be a
nonexpansive mapping such that Fiz(S) is nonempty. Let f : C — C be a contrac-
tion, that is, there exists a € (0,1) such that ||fx — fy| < allz —y||,Vz,y € C,
and let {z,} be a sequence defined by

(1.4)

x1 € C arbitrary chosen,
f(xn),Yn €N,

€n
€n

1
Tp+1 = T%an + i+

where {e,} C (0,1) satisfies certain conditions. Then the sequence {z,} converges
strongly to z € F'iz(S), where z = Ppiy(s)f(2) and Ppjy(s) is the metric projection
of H onto Fiz(S).

In 2006, using the concept of the viscosity approximation method (1.4), Marino
and Xu [10] introduced the general iterative method and obtained the strong con-
vergence theorem. Let T : H — H be a nonexpansive mapping with Fiz(T) # 0.
Let f: H — H be a contractive mapping on H and let {z,,} be generated by

(1.5) { xo € H arbitrary chosen,

Tnt1 = (I — anA) Txy + anyf (x,),n >0,

where {«, } is a sequence in (0, 1) satisfying the appropriate conditions. Then {x,,}
converges strongly to a fixed point & of 7" which solves the variational inequality:

(A=~f)z, 2 —2z) <0,z € Fiz(T).

In 2015, Yao et al. [18] proposed the intermixed algorithm for two strict pseu-
docontractions S and T as follows:

Algorithm 1.2. For arbitrarily given xo € C,yo € C, let the sequences {z,} and
{yn} be generated iteratively by

Tnt1 = (]- - 6n) T + ﬂnPC [anf (yn) + (]- - k - an) T + kan] ,n 2 0,
(16) Yn+1 = (1 - Bn) Yn + BuPc [ang (xn) + (1 —k— an) Yn + kSyn] ,n >0,

where T : C' — C'is a A-strict pseudo-contraction, f : C' — H is a pj-contraction
and g : C' — H is a pa-contraction, k € (0,1 — \) is a constant and {«, }, {8,} are
two real number sequences in (0,1).

Furthermore, under some control conditions, they proved that the iterative
sequences {x,} and {y,} defined by (1.6) converges independently to Ppiz(1)f (y*)
and Ppiz(s)g (), respectively, where z* € Fiiz(T) and y* € Fiz(S).
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Motivated by Yao et al. [18], in 2018, Suwannaut [15] introduce the S-intermixed
iteration for two finite families of nonlinear mappings without considering the con-
stant k as in the following algorithm:

Algorithm 1.3. Starting with z1,y1,21 € C, let the sequences {x,}, {yn} and
{zn} be defined by

Tn+l = (1 - ﬁn) Ty + 6n (anfl (yn) + (1 - Oén) S.Z‘n) ’
(17) Yn+1 = (1 - ﬁn) Yn + ﬁn (aan (xn) + (1 - an) Tyn) v Z 17
)

where S, T : C — C, is a nonlinear mapping with Fiz(S) N Fiz (T) # 0, f; : C —
C is a contractive mapping with coefficients «;;¢ = 1,2 and {8,},{a,} are real
sequences in (0, 1), Vn > 1.

Under appropriate conditions, they prove a strong convergence theorem for
finding a common solution of two finite families of equilibrium problems.

Inspired by the previous work, we introduce the new iterative method called the
three-step intermized iteration for two finite families of nonlinear mappings as the
following algorithm:

Algorithm 1.4. Starting with x1,y1,21 € C, let the sequences {x,}, {yn} and
{zn} be defined by

Tn+1 = OnTn + 77n5133n + MnPC [an'Ylfl (yn) + (I - anAl)Tl-rn] 5

Yn+1 = 5nyn + nnS2yn + ,U/nPC [an72f2(zn) + (I - anAQ)TQyn] 5
(18) Zn+1 = 571271 + 777153271 + ,UfnPC [an’y&fS(xn) + (I - anA3)T3zn] yn > ]-7
where S;,T; : C — C, where ¢ = 1,2,3, is nonlinear mappings with Fiz(S;) N
Fiz (T;) # 0,Vi = 1,2,3, f; is a contractive mapping with coefficients &;, A; : C — C
is a strongly positive linear bounded operator with coefficient 5; > 0 and 0 < v < ?,
where v = max;e (1,23} Vi, § = MaX;e(1,2,3) & and B = minge 103y Bis {on}, {Mn},
{pn} and {a,} are real sequences in (0,1) and §,, + 1, + pn = 1,Vn > 1.

Remark 1.5. From Algorithm 1.2 and 1.4, we observe that Algorithm 1.4 can be
seen as a modification and extension of Algorithm 1.2 in senses that we choose to
consider the three-step intermixed algorithm for approximating fixed points of two
finite families of nonlinear mappings and we study the general iterative method
without a constant k.

Remark 1.6. If we take S; = I, v; = 1 and A; = I for i = 1,2, 3, then the iterative
method (1.8) reduces to

Tn4+1 = (1 - /"n) Tn + Hn [anfl(yn) + (1 - an)Tlxn] )
Yn+1 = (1 - /an) Yn + Hon [anf2(zn) + (1 - O‘n)TQ’yn] )
(1.9) Zng1 = (1= pn) 20 + pin [on f3(2n) + (1 — o) T32,] .

The iteration (1.9) is a modification and improvement of iteration (1.7) in sense
that it extends to three-step iteration for three nonlinear mappings.
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Inspired by the previous research, we introduce the three-steps intermixed itera-
tion for two finite families of nonlinear mappings. Under appropriate conditions, we
prove a strong convergence theorem for finding a common fixed point of a strictly
pseudo-contractive mapping and a strictly pseudononspreading mapping. Finally,
we give a numerical example for the main theorem in a space of real numbers.

2. Preliminaries

We denote weak convergence and strong convergence by notations V' —" and
—" respectively. For every x € H, there is a unique nearest point Pox in C such
that

A\

J = Poz|| < ||z —yl|, Yy € C.

Such an operator P¢ is called the metric projection of H onto C.
We now recall the following definition and well-known lemmas.

Lemma 2.1. ([16]) For a given z € H and u € C,
u=Peze (u—z,v—u)>0,YveC.
Furthermore, Pc is a firmly nonexpansive mapping of H onto C and satisfies
|Pcw — Poyl® < (Pex — Poy,x —y) Y,y € H.

Lemma 2.2. ([12]) Each Hilbert space H satisfies Opial’s condition, i.e., for any
sequence {x,} C H with x, — x, the inequality

liminf ||z, — z|| < liminf ||z, — y||
n—oo n—oo
holds for every y € H with y # x.

Lemma 2.3. ([13]) Let H be a real Hilbert space. Then the following results hold:
(i) Forallz,y € H and a € [0,1],

laz + (1 = a)y|* = allz]” + (1 = @) ly]* = a(1 = a) [z — y|I*,
(i) [z +yl? < ||z||® + 2{y,z + y), for each x,y € H.
Lemma 2.4. ([17]) Let {s,} be a sequence of nonnegative real numbers satisfying
Snt1 < (1 — ap)sp + 6p, ¥ >0,

where a, is a sequence in (0,1) and {0,} is a sequence such that

(1) Zan = 00,
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On =
2) li — < E n .
(2) 17€risotipan700r |0n] < o0
n=1
Then, lim s, =0.

n—oo

Lemma 2.5. ([10]) Assume A is a strongly positive linear bounded operator on a

Hilbert space H with coefficient B > 0 and 0 < § < ||A||=t. Then ||[I —5A|| < 1-48.

Lemma 2.6. ([4, 14]) Let C be a nonempty closed convexr subset of a real Hilbert
space H and let T : C — C be a k-strictly pseudo-contractive mapping with
Fix(T) # (0. Then, we there hold the following statement:

(i) Fiz(T)=VI(C,I-T);
(ii) For everyu € C and v € Fiz(T),

|1Pc(I=XI-T))u—v| <|u—v|, forue C,ve Fiz(T) and A € (0,1 — k).

By applying Remark 2.10 in [5], we easily obtain the following result:

Lemma 2.7. Let S : C — C be a k-strictly pseudo nonspreading mapping with
Fiz(S) # 0. DefineT : C — C by Tx := (1 — Nz + Sz, where A € (0,1 — k).
Then there hold the following statement:

(i) Fiz(S) = Fiz(T)

(ii) T is a quasi-nonexpansive mapping, that is,

Tz —y|| < ||z —yl||, for every x € C and y € Fix(S).

Proof. 1t is clear to prove that (i) holds.
(ii) Let x € H and y € Fiz(S). Then we derive

1Tz = yl* =11 = N (= — ) + A(Sz — )|
=1 =Nz = ylI* + M Sz -y = A1 = V|| Sz — ||
<L =Nz = y* + A (llz = yl* + slle — Sz[*) = A1 = N)||Sz — =|*
=llz =yl + sA|z = Szl = A(1 = N)[|Sz - z||?
=llz = ylI* = M1 = £) = M)}z — Sz||*
<llz - y*.

This implies that T is a quasi-nonexpansive mapping. O
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3. Strong Convergence Theorem

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H.
Fori=1,2,3, let f; : C — C be a contractive mappings with a coefficient & and & =
max;eq1,2,3}) &, let S : C — C be a k;-strictly pseudo-contractive mapping and W; :
C — C be p;-strictly pseudo-nonspreading mapping with Q; = Fix(S;) N Fix(W;) #
(. For eachi=1,2,3, define a mapping T} : C — C by Tiz = (1 — w,) z +w, Wiz,
for all x € C, and let A; : C — C be a strongly positive linear bounded operator
with a coefficient 5; > 0 and 0 < v < ?, where v = maX;e(1,2,3,}7 and f =
min;eg1231 Bi- Let {xn}, {yn} and {z,} be sequences generated by x1,y1,21 € C
and

I-X\,(I-51))z,

yn) + (I - anAl)Tixn] )
I—X,(I—=52)yn

Zn) + (I - anA2)T3yn} ’
I— n(I—Sg))Zn

mn) + (I - OénA3)TSZn] ’

Tn+1 = OpnZn + M Po
+unPo [anm f1
Ynt1 = Onyn +mmPo
+pn Po [omv2 f2
Zn+l = OnzZn + nuPo
+pnPo o3 f3
for n > 1, where {an}, {6n}, {mn}, {un} C (0,1), {N,} C (0,1 — k), &

minief123y, {wn} C (0,1 — p), where p = minge(123) and &y + pn + My
satisfying the following conditions:

N~~~ —~

—

—

(i) lim ap, =0 and g Oy = 00;
n—oo
n=1

(il) 0 <7 < 0ny M,y i, < v < 1, for some 7,0 > 0;
o0 o0

(iii) Z Ap < 00, an < 005
n=1 n=1

oo oo oo
(1V) Z Ian-i-l - an| < 00, Z |6n+1 - 6n| < 00, Z ‘,u/n-ﬁ—l - /f"n| < 00,

n=1 n=1 n=1
[e%S) o0 [e9)
Z 41 — 1| < 00, Z [Ant1 = Anl < o0, Z lwn4+1 — wn| < 0.
n=1 n=1 n=1

Then the sequences {x,}, {yn} and {z,} converge strongly to & = Po, (I — A)Z + vf1 (7)),
§=Pa, (I —A2)7+vf2(2)) and Z = Pao, (I — A3)zZ + vf5 (Z)), respectively.

Proof. The proof of this theorem will be divided into five steps.

Step 1. We show that {z,} is bounded.

Since a,, — 0 as n — oo, without loss of generality, we may assume that «,, < HTliH’
foralli=1,2,3 and n € N.
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Let ¥ € Oy, y* € Qo, 2" € O3, B = minieq123) Bi, § = max;eq1,2,3) & and
7 = MaX;ec{1,2,3} Vi- Then we have
[#n41 — 2]

on (xn — )+ 1 (Pe (I = Ay (I = S1)) T, — ™)

+ 1 (Pe [ fi(ya) + (I = €A Thaa] — ) |
<O [|n — 2| + 10 ([P (I = A (I = S1)) @y — 2|

+ pn || Pe [anm f1(yn) + (I — an ATz, ] — 2|
< (1= ) 2 — 2711+ f [t 1.1 () — Ax” |+ T — | [T — ]
<A = pa) [|#n — 27|

+ i [ y1&1 [y — Y7 | + an [[71f1 () — Arz™[| + (1 — anB) [ — 27|]

(3.1)
< (1 = pnanB) |on — 2™ || + prnan¥E Y — ¥ || + pnon |71 f1 (y*) — Arz™||.

Similarly, we get

Y1 — "l
(3.2) <1 = pnanB) lyn — || + pnan¥E (|20 — 2% + pnom |72f2 (27) — Aay™||

and

[znt1 = 27
(3.3) < (1= pnanf) llzn = 2"l + pnony€ [Jon — 27| + pnam (|73 f3 (27) — Azz"]|.

Combining (3.1), (3.2) and (3.3), we have
[ene1 = 2"+ [ynsr = y* [ + 12040 = 27

< (1= pnan (B =) (lzn — 2| + lyn — v*|| + [l2n — 27|
+ pnan (71 f1 (Y") — Arz™|| + |[vafo (2%) — Aoy™|| + |13 f3 (27) — Asz™]|) .

By induction, we can derive that
[zn = 2" 4+ lyn — ¥"[| + llzn — 27|
<max { a1 = a*)| + llys = y* | + 12— 21

[vif1 (y") = Ara™ || + v fa (2°) — Aoy || + [ly3.f3 (2%) — Az2*|| }
B—~E ’

for every n € N. This implies that {x,},{y.} and {z,} are bounded.

Step 2. Claim that lim,, o ||Znt+1 — zn|| = 0.
First, we let
un, = Pc [an%fl(yn) + (- OénA1)Tﬁxn] ,
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vn = Po [anv2fa(zn) + (I — anA2) T yn)
and
wy, = Po [an73f3(xn) + (I - anAs)TS’zn} :

Then, observe that

”un *Un—lu
= || Pc [anmifi (yn) + (I — anAy) Ty, ]
- Pc [anfl’)/lfl (Yn—1) + (I — an—141) Té_lxnfl] I
<oy 1f1 (Yn) = f1 W)l + 71 o — a1 | 1 f1 (Y1)l
+ 1 = anAs|| | Thwn — T _y 1|
[ = anA) Ty g2y = (I = @ A1) Ty |

<any181 [y — yn-1ll + 71 lan — an-a[1f1 (yn-1)
+ (1= ) (1= wn) n = 2
+ |wn = wno1| [|#n—1 | + wn [Wizn = Wizp_1|| + |wn — wn—1| ”Wlxnle)
+ |an — an—1] ||[A1 T 01|
<Y [Yn — Yn—1ll + lan — an—1| (Y 1 fr @n—1)]| + [[ A1 Thzn—1]|)
+ (1 —anf) ((1 = wn) [lzn — 2n-all + lwn — wnal ([[n -]l + Wizn-1])

@@-wwm%—m%ﬁw
By the definition of z,,, we obtain

[Znt1 — 24|

< ||z — o1l + [0n — On—1| |Tn—1]|
1 |[Po (I = An(I = S1)) 2n — Po (I = An—1(I = 51)) T |
+ 00 = n-1| 1Pe (I = A1 (I = S1)) n—1l| + pin [|un — 1|
+ [t = pn—1] Jun—1

<Op |lzn — zp—1ll + [0n — dn—1| |[Zn-1ll + 70 |20 — Zn-1]|
+ 00 [[An (L = S1)2n — An1(L = S1)zn—1]|
+ [ = M-l [[Pe (I = Ap—1(L = 51)) @y ||

+ pn |:Oén’Yf Hyn - yn71|| + |an - an71| (’7 ||f1 (ynfl)H + HAlTéxnle)
+ (1= anf) ((1 —wn) |20 = 2n || + wn = wna| (JEn—all + [Wizn-1])

o wn Wiz = Wiz )| + [ttn = i1 1]

7
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<A = pn) |20 — -1l + 160 = G-t [[2—1]|
+ M An [[(L = S1)xn — (I — S1)@p—|
+ 10 [An = An—a | [[(1 = S1)zn—1]|
+ 0 = -1l [[Po (I = An—1(I = 51)) Tn—a |
+ tinenYE Yn — Yn-1ll + |l — an1| (’Y I f1 (Yn-1)Il + HAlTixn—lH)
+ pn (1 — anB) [z — T || + |wi — wno1| (|Zn-1ll + [[Wizn-1]])
+ wp [Wizy = Wizn_1|l + |ttn — ttn—1] [[un—1|

<1 = pnanB) |20 — Tp-1ll + pnonyE yn — Yn—1ll + 160 — on-1] |zn-1]]
+ A (1 = S1)xn — (I = S1)zp—1ll + [An — An—a| [(T = S1)zp-1]]
+ 10 = =1l |1Pe (I = An—1(1 — 51)) 21|
+ Jan — an—1| (Y 11 n=2) |l + A1 Ty 21 ]|)
+ |wn — w1 | (|[Zn—1 [ + [Wizn-1l) + wn [Wizy — Wiz, 1|
(3.5) + | = pn—1l Jun—1]|-

Using the same method as derived in (3.5), we have

1Ynt1 — ynll
< (1 = pn0nB) |yn = Yn—1ll + pnonyé |20 — 2n-1ll + [0n — dn—1] [|[yn—1]|
+ A (T = S2)yn — (I = S2)yn—1ll + A0 = Al [[(T = S2)yn—1|
+ |1 = Nn—1| [|[Pe (I = An—1(L = 52)) yn—1]|
+lan = ana| (v 12 o) + || AT yn—1]])
+ |wn — w1 | (lyn—1ll + Wayn-1l]) + wn [Wayn — Wayn_1|
(3.6)  +lun — ttn—1] lvn—1]l

and

[2n4+1 — 2l
<1 = pnenB) [|2n — 2n—1ll + nan¥§ |20 — Tn-1ll + [0 — Sn—1 [[2n-1|
+ A (L = 83)zn — (I = S3)zn-1 + [An — An—1| [[({ = S3)2n—1]|
+ 11 = 1| [[Pe (I = An—1(I = S3)) zn—1 |
+lan = an1| (v 1f3 (@n-1) || + || AT 201 ||)
+ |wn — wi—1] (lzn-1ll + Wazn—1l]) + wn [[Wa2n — Wazp_1]|
(7)) e — | w1l
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From (3.5), (3.6) and (3.7), then we get
zn+1 = @nll + 1Yn+1 — Ynll + [I2n41 — 2l
<= pnan (B =) lllen = znall + 1yn = ynall + 120 — 201l
+ 100 = dn—a| (lzn—1ll + llgn—1ll + [lzn-al) + /\n< I = S)an = (I = S1)zn||

+ (I = S2)yn — (I = S2)yn—1ll + (I = S3)2n — (I — 53)2n71||)
+ A = At (I = St)zn—1l| + (1 = S2)yn—1l + [[({ = S3)zn—1])
+ 10 — 1] (HPC (I = A1(I = S1)) 1|l + [[Po (I = Ap—1(I = S2)) Yn—1l

1P (1= AT = 88)) zn-all ) + law = anal (Y(If2 @a)| + 112 (vl
s Gon ) + (AT |+ AT 21| + [ 4TS 204 ]) )
+ wn = wn-l ((zn-1ll + g1l + lzn-1])
(W1l + Wagar |+ [Wazaa))
+wn ([Wizn = Wizn_1[| + [[Wayn — Wayn—1|| + [Wazn — Wazp—1))
+ [pn = pin—1] ([tn—1l| + [[on—1]l + lwn—1l]) -
Applying Lemma 2.4 and the condition(iii), (iv), we can conclude that
(3.8) |nt1 — znll = 0, |Yn+1 — ynll = 0 and ||zpe1 — 20| — 0 as n — oc.
Step 3. Prove that nhﬁn;o |un, — Po (I — Ap(I — S1)) unl| = nlbn;o Hun — TiunH =0.
To show this, take @, = an¥1f1(yn) + (I — anA;)TEx,. Then we derive that
i1 — 2|
=160 (@ — %) + 1 (Po (I = An(I = S1)) @ — &) + fin (n, — 2)||?
<O [[wn — 2*|* 41 | Pe (I = AT = S1)) 2 — 2| + pa [, — 2|
— O | Tn — Po (I = Au(I = 81)) 2 )?
<= pin) lzn = 217 + o [lam (M1 () = AvTpn) + (Tpwn — %)
— Opin | Tn — Po (I = Au(I = 81)) 2 ?
< (1= pn) [l — 2%
o in || Thwn = a*||" + 200 (11 (gn) = A Thn, T — ) |
= Ot |2n — Po (I = A (I = 1)) 2
< — 21 + 2ncn |y fr (yn) = AT | | — 27|
= S |4 — Po (I = Aa(I = S1)) @[,

’ 2
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which implies that

Sntin |lzn — Po (I — A (I — S1)) anQ
<lzn — JC*”2 —|Zn41 — x*||2 + 2pn 0, ||71f1 (Yn) — AlTr}mnH % — 2™
Sllan = zngall (o — 2% + 2n1 — 27)

+ 20tn i |71 (Yn) — ATy | Jin — 2] -

By (3.8), the condition (i) and (ii), thus we get
(3.9 |xn — Po (I = Ap(I — S1)) x| — 0 as n — oo.
Observe that
Tpa1 — T =N (Po (I = A(I — S1)) Ty — Tp) + pon, (U, — Ty) -

This follows that

fin \[tn = o]l < |Po (I = An(I = S1)) 2n — x|l + |20 41 — 2nl]-
From (3.8) and (3.9), we obtain
(3.10) |tn, — 2nl] = 0 as n — oo.
Observe that

Hun —Po (I —A(I — Sl))unH
<wn — x| + |20 — Po (I = Ap(I — S1)) 24|
+ |Pc (I — Ap(I — S1))xn — Po (I — A(I — S1)) un|
L2 Jup = @p|| + |20 — Po (I = An(I = S1)) wp |l + A ([(1 = S1) 20 — (1 — S1) un| -
Hence, by (3.9), (3.10) and the condition (iii), we obtain
(3.11) lun = Po (I = Ap(I — S1)) up|| — 0 as n — co.

Applying the same argument as (3.11), we also obtain
(3.12)
[, — Pe (I = Ap(I — S2)) vn|| = 0 and ||w, — Po (I — An(I — S3)) wy|| — 0 as n — oo.

Consider

[Zn+1 = unl| < |Tns1 — ol + 20 — unll,

by (3.8) and (3.10), we have

(3.13) |€nt1 — unl| — 0 as n — oo.
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Since
Hzn - T%an < lzn = zngall + l[2ng1 — unll + ||un - Tifan
< = Tnga | + |20 — unll + Hﬂn - Téan
= [|#n — Tpga || + [Zn+1 — unll + ||"Ylf1 (yn) — AlTr}an )
from (3.8), (3.13) and the condition (i), we get

(3.14) Hxn—Tﬁazn| — 0 asn — oo.

Consider

lun = Tnun|| < llun — @all + |20 — Tpaa|| + || Tazn — Thun||

< 2|Jun — || + |20 — Tpan|| + wn [[Wizn — Wiu, ||
Therefore, by (3.10), (3.14) and the condition (iii), we have
(3.15) |un = Thun|| — 0 as n — .
Applying the same method as (3.15), we also have
(3.16) ||vn—T,3vn|| — 0 and ||wn—TSwn|| — 0 asn— oo.
Step 4. Claim that
limsup (11 f1 (9) — A1Z,u,, — &) <0, where

n—oo
I =Po, (I —-A)Z+nf1(7))-
First, take a subsequence {u,, } of {u,} such that

(3.17) lim_fup mfi(g) — A%, up, — ) = (M f1(g) — A%, up,, — 7).

lim
k—o0
Since {z,} is bounded, then we can assume that x,, — & as k — co. From (3.10),
we obtain u,, — & as kK — oo.

Next, assume & ¢ Fiz (S1). Since Fiz (S1) = Fix (Po (I — A, (I — 51))), then we
get & # Po (I — A (I — S1)) .

By nonexpansiveness of Pg, (3.11), the condition (iii) and the Opial’s condition, we
obtain

liminf |u,, — &|| <liminf ||u,, — Po (I — A, (I — S1)) 2]
k—o0 k—o0
<timinf [ flun, — Po (I = Ay (I = 1)) tng |
k—o0
1P (I = Ay (T = 81)) tn,, = Por (I = An (1 = 1)) 8]
<timinf [ [fun, = Po (= Ay (1 = 1))ty ]| + lun, = 3

+ Ay (T = 1)t = (I = S0 |

=liminf ||uy,, — Z| .
k— o0
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This is a contradiction. Therefore
(3.18) & € Fix (S1).
Assume that & ¢ Fiz (Wy). Because Fiz (W1) = Fiz (T, ), then we have & #

T! .
nk
From (3.15) and the Opial’s condition, we deduce that

liminf ||u,, — #|| <liminf H“nk - Tﬁkfc
k—o0 k—o0

<tminf ([, — T, | + 78 v, — T8,

<tim inf [ [[un, = Th, tn || + Jtn, =
o g (T = W), = (1= W) 2]
zlikrggf |ten,, — 2| -
This is a contradiction. Thus we obtain
(3.19) & € Fiz (Wy).
By (3.18) and (3.19), this yields that
(3.20) z €M = Fix (S1) N Fix (Wy).
Since x,, — & as k — 00, (3.20) and Lemma 2.1, we can derive that

lim sup <’}/1f1 (Z]) - Alf,un - 53> = <71f1 (Z:I) - Ali‘vunk - i>

msu el
=mf1 (@) — A2, 2

=mh@) - AT+2-3,2-1)

(3.21) <0.

Following the same method as (3.21), we easily obtain that

(3.22)
limsup (y2 f2 (2) — A2f, v, — §) < 0 and limsup (y3f3 () — AsZ,w, — £) < 0.
n—oo n—oo

Step 5. Finally, Prove that the sequence {z,}, {yn} and {z,} converge strongly
to @ = Po, (I -A)T+7f1(9), § = Po, (I —A2)J+72f2(2)) and z =
Pa, (I — A3)Z + v3f3 (Z)), respectively.
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By firmly-nonexpansiveness of Pg, we derive that
llun — 5”2 = || Potn — CEH?

< <u~n - fvun - (i>

=(an (1 f1 (Yn) — A12) + (I — 0 Ar) (Tpwy — T) ,un — )

=0 <’71f1 (yn) — AT, up — j> + <(I - anAl) (Téxn - ‘%) , Un —

<apm <f1 (yn) - fl (g) y Un — j> + an <71f1 (g) - Aljaun - g~s>
+[|(T = anAr) (Than — 2) | lun — 2|
<anm&1 yn = 9l [lun — 2| + an (11 f1 (§) — AT, up — T)

+ (L= anf) [lzn — 2| lun — 7]

83

z)

any§ - - - . -
< (g = 31 + lwn = 21°) + an (11 (5) = A1, un — 2)

-2

1—-a, g -
+ 270 (= 2 4 i — 21P)
an7§ ~12 1_04716 ~112 1_0477,(6_75) ~ 12
=Ty g+ 2 o, g LI,

+ Oy <’71f1 (g) - Alja Up — ‘%> 5

which yields that

lun — 31?20y — g+ 2, g
1+ an (8 — 7€) 1+ an(B8 =€)
2

3.23 +—_— J) — A1 %, uy, — T

(3:23) T+ an(B -9 (nf1(§) — A&, un — 7)

From the definition of x,, and (3.23), we get

”anrl _jHQ
<6 || — jH2 + 0 [P (I = AL = 51)) xp — i||2 + pon ||, — 5f||2

0y g+ 2l
T+ an(B—10) T+ an(B—19)
200,

+ TTan(B—19) (v1f1(9) — Ar®, up — @]

_(1- un(lan5>> S S 1o 00 S T
= (1ot g ) o =+ g e

2pna, N _ R
+ m (v1if1(9) — A1Z, up — T)

< (1= ptn) 2 = &I + pin

2

o
|
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_ _:U’n(1+an(ﬁ_’7£))_Mn(l_anﬁ)) A2 M 2
B <1 1+ o (B — 7€) |zn — Z[I” + 1+ an(B —€) lyn — 4l
_ ._Mﬂdw—7®> TS 1. [ ST
= (1 Py ) e A s
(3.24)
2pnCp - - -
Ii;z;xz;jfagj<71f1(y)—-Aax,un-—x>.

Similarly, as derived above, we also have

nQn 2ﬂ7 5 ~ nOin 5 ~
- M) g — G1° + L2202, - 2

~112
D L e T+ an(3— 79

2pn0ip - _ ~
(3.25) + m (v2f2 (2) — A2g,vn — 7))
and
~n2 /f('nan(2ﬁ _75) ~n2 MnOtrﬁi ~112
|2ne1 — 2| < <1 - HO!n(ﬁ’Yﬁ)) lzn — 2" + m |zn — ||
2pn 0ty

(3.26) ) (v3f3 (T) — A3z, wn — 2) .

+ ]-+Oén(ﬁ_’yg

From (3.24), (3.25) and (3.26), we deduces that

2 ~12 ~112
Zn41 — ZII° + [[yn+1 — 17 + lzn41 — 2|l

< (1= 2B (o — 17 + = 1+ o — 31P)

1+ an(B-E)
+ %(hﬁﬁ (9) — A1, up — Z) + (2 f2 (2) — A28, 00 — 1)

(3.27)  + (y3fs (7) — A3, wy — ) )

By (3.21), (3.22), the condition (i) and Lemma 2.4, this implies by (3.27) that the
sequences {x,}, {yn} and {z,} converge strongly to & = Po, ((I — A1)Z + 71 /1 (1)),
g = Pao, (I —A2)§+2f2(2)) and Z = Pq, (I — A3)Z+ v3f3(Z)), respectively.
This completes the proof. O

The following Corollary is a direct consequence of Theorem 3.1.

Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert space
H. Fori=1,2,3, let f; : C — C be a contractive mappings with a coefficient &; and
& = maxjc1,2,3& and let W; : C — C be p;-strictly pseudo-nonspreading mapping
with Fiz(W;) # 0. Define a mapping T : C — C by Tix = (1 — wy) x + w, Wi,
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forallz € C and i = 1,2,3. Let {z,}, {yn} and {z,} be sequences generated by
x1,Yy1,21 € C and

Tpn+1 = (1 - ,U/n) Ty + Un [anfl(yn) +(1— an)Téxn] s
(3.28) Ynt1 = (1= pn) Yn + pin [a”fg(z”) +(1 - O‘n)Tiyn] )
Zn+l = (1 - :U'n) Zn + ln [Oénf3(zn) + (1 - an)ngn] )

for n > 1, where {an}, {pn} C (0,1) and {w,} C (0,1 — p), where p =
min;e ¢y 2.3} pi, satisfying the following conditions:

(i) lim a, =0 and E Oy, = 00;
n—oo
n=1

(ii)) 0 <7 < iy, <w < 1, for some 7,v > 0;
o0

(iii) Y wn < oo;
n=1

o0 oo o0
(iv) Z |41 — anl < oo, Z ltng1 — pin] < 00, Z [Ant1 — An| < 00,

n=1 n=1 n=1

o0
Z lwnt1 — wn| < 0.

n=1
Then the sequences {x,}, {yn} and {z,} converge strongly to & = Ppiyow,)f1 (7).
U = Priz(wy) f2 (2) and Z = Ppiy(ws) f3 (T), respectively.

Proof. For each i =1,2,3, put S; =1, v; =1 and A; = I. Then, by Theorem 3.1,
we obtain the desired result. O

4. A Numerical Example

In this section, we give a numerical example to support our main theorem.
Example 4.1. For ¢ = 1,2,3, let v; = 3, 72 = 0.0001, v3 = 7 and the mappings
A; : [-5,5] — [-5,5], fi : [-5,5] — [-5,5], S; : [-5,5] — [-5,5] and W; : [-5,5] —
[—5, 5] be defined by

Alx:%v, Agx:i%x, Agx:%,
hiz = %&00, oz = %095, fax = x—?l)—550’
Slx:x_glo, Szle%’ ng:x;_5,
Wyw = £225 ngz{ xgif l_f(;)ifci‘z Wiz = “215, for all z € [5, 5]
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_ 1 _ nt2 _ 3n+2 _ 2n+1 _ 1 _ 1
Let o = foagg, On = Giis) I = Gusso M = Goaso A = nzitos A4 Wn = sog1gp

for every n € N. Then, the sequences {x,}, {yn}, {#n} converge strongly to —5, 0,
5, respectively.

Solution. For every i = 1,2, 3, it is obvious to check that S; is a 0-strictly pseudo-
contractive mapping, where Fix (S1) = {5}, Fix (S2) = {0}, Fix (S3) = {5}.
Moreover, W; is a k;-strictly pseudononspreading mapping with

{0}, if0 <z <5,

{z}, if —5<x<0 Fiz (W3) = {5}.

Fiz (Wy) = {—5}, Fiz (W) = {

Thus, we get

Qg = Fix (Sg) N Fix (Wg) = {5}

Clearly, all sequences and parameters are satisfied all conditions of Theorem 3.1.
Hence, by Theorem 3.1, we can conclude that the sequences {z,}, {yn}, {zn}
converge strongly to —5, 0, 5, respectively.

Table 1 and Figure 1 show the numerical results of sequences {x,}, {y,} and {z,}
with x1 =0, y1 =5, z1 = 0 and n = 100.

In Yn Zn
0.000000 | 5.000000 | 0.000000
-0.796797 | 4.561817 | 1.374887
-1.553784 | 4.159760 | 2.449299
-2.262385 | 3.796830 | 3.231195
-2.923918 3.470288 3.783815

U W N |3

50 | -5.000000 | 0.132362 | 5.000000

96 | -5.000000 | 0.008590 | 5.000000
97 | -5.000000 | 0.008146 | 5.000000
98 | -5.000000 | 0.007729 | 5.000000
99 | -5.000000 | 0.007335 | 5.000000
100 | -5.000000 | 0.006965 | 5.000000

Table 1: The values of {z,, }, {y»} and {z,} with initial values 1 = 0, y; = 5,
z1 = 0 and n = 100.

Remark 4.2. From the above numerical results, we can conclude that Table 1 and
Figure 1 show that the sequences {z,}, {y»} and {z,} converge independently to
—5€ Q1,0 € Q and 5 € Q3, respectively, and the convergence of {z,}, {y.}, and
{#zn} can be guaranteed by Theorem 3.1.



The Three-step Intermixed Iteration for Two Finite Families 87

. and z

X
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10 20 30 40 a0 B0 70 g0 90 100
n

Figure 1: An independent convergence of {x,}, {y,} and {z,} with initial
values r1 =0, y; = 5, 21 = 0 and n = 100.
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