DOI QR코드

DOI QR Code

Cellular internalization effect of Ara27 in various cell lines

  • Minseo, Kim (Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, Seoul National University School of Dentistry) ;
  • Sangkyu, Park (Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, Seoul National University School of Dentistry) ;
  • Jeongmin, Seo (Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, Seoul National University School of Dentistry) ;
  • Sangho, Roh (Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, Seoul National University School of Dentistry)
  • Received : 2022.11.26
  • Accepted : 2022.12.02
  • Published : 2022.12.31

Abstract

Protein and peptide candidates are screened to apply therapeutic application as a drug. Ensuring that these candidates are delivered and maximized effectiveness is still challenging and a variety of studies are ongoing. As drug delivery system vehicles, cell-penetrating peptide (CPP) can deliver various kinds of cargo into the cell cytosol. In a previous study, we developed Ara27 CPP, which are a zinc knuckle family protein of Arabidopsis, and confirmed internalization in human dermal fibroblasts and human dental pulp stem cells at low concentration with short time treatment condition without any toxicity. Ara27, an amphipathic CPP, could be modified and utilized in the biomedical field excluding the risk of toxicity. Therefore, we would like to confirm the non-toxic induced penetrating ability of Ara27 in various cell lines. The purpose of this study was to screen the cell internalization ability of Ara27 in various cell lines and to confirm Ara27 as a promising core CPP structure. First, Ara27 was screened to confirm non-toxicity concentration. Then, fluorescence-labeled Ara27 was treated on human normal cell lines, cancer cell lines and animal cell lines to identify the cellular internalization of Ara27. Ara27 was well intracellular localized in all cell lines and the intensity of fluorescence was remarkably increased in time pass manner. These results indicate that Ara27 has the potential as a core structure for applications in various drug delivery systems.

Keywords

Acknowledgement

This work was supported by a grant from the National Research Foundation of Korea (NRF-2020R1F1A1070433) and by the Technology Development Program (S2910763) funded by the Ministry of SMEs and Startups (Korea).

References

  1. Allolio C, Magarkar A, Jurkiewicz P, Baxova K, Javanainen M, Mason PE, Sachl R, Cebecauer M, Hof M, Horinek D, Heinz V, Rachel R, Ziegler CM, Schrofel A, Jungwirth P. 2018. Arginine-rich cell-penetrating peptides induce membrane multilamellarity and subsequently enter via formation of a fusion pore. Proc. Natl. Acad. Sci. U. S. A. 115:11923-11928. https://doi.org/10.1073/pnas.1811520115
  2. Borrelli A, Tornesello AL, Tornesello ML, Buonaguro FM. 2018. Cell penetrating peptides as molecular carriers for anticancer agents. Molecules 23:295.
  3. Campelo IS, Pereira AF, Alcantara-Neto AS, Canel NG, SouzaFabjan JM, Teixeira DI, Camargo LS, Melo LM, Radis-Baptista G, Salamone DF, Freitas VJ. 2016. Effect of crotamine, a cell-penetrating peptide, on blastocyst production and gene expression of in vitro fertilized bovine embryos. Zygote 24: 48-57. https://doi.org/10.1017/S0967199414000707
  4. Frankel AD and Pabo CO. 1988. Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55:1189-1193. https://doi.org/10.1016/0092-8674(88)90263-2
  5. Horn M and Neundorf I. 2018. Design of a novel cell-permeable chimeric peptide to promote wound healing. Sci. Rep. 8: 16279.
  6. Kim D, Park S, Jung YG, Roh S. 2016. In vitro culture of stemlike cells derived from somatic cell nuclear transfer bovine embryos of the Korean beef cattle species, HanWoo. Reprod. Fertil. Dev. 28:1762-1780. https://doi.org/10.1071/RD14071
  7. Klimpel A, Lutzenburg T, Neundorf I. 2019. Recent advances of anti-cancer therapies including the use of cell-penetrating peptides. Curr. Opin. Pharmacol. 47:8-13. https://doi.org/10.1016/j.coph.2019.01.003
  8. Komin A, Russell LM, Hristova KA, Searson PC. 2017. Peptide-based strategies for enhanced cell uptake, transcellular transport, and circulation: mechanisms and challenges. Adv. Drug Deliv. Rev. 110-111:52-64. https://doi.org/10.1016/j.addr.2016.06.002
  9. Kuna M, Waller JP, Logue OC, Bidwell 3rd GL. 2018. Polymer size affects biodistribution and placental accumulation of the drug delivery biopolymer elastin-like polypeptide in a rodent pregnancy model. Placenta 72-73:20-27. https://doi.org/10.1016/j.placenta.2018.10.005
  10. Lee J, Kwon M, Oh N, Park J, Park S, Seo J, Roh S. 2020. Cell-penetrating peptides enhance the activity of human fibroblast growth factor 2 by prolonging the retention time: a new vision for drug-delivery systems. Int. J. Mol. Sci. 21:442.
  11. Lim J, Kim J, Kang J, Jo D. 2014. Partial somatic to stem cell transformations induced by cell-permeable reprogramming factors. Sci. Rep. 4:4361. https://doi.org/10.1038/srep04694
  12. Lindgren M, Hallbrink M, Prochiantz A, Langel U. 2000. Cell-penetrating peptides. Trends Pharmacol. Sci. 21:99-103. https://doi.org/10.1016/S0165-6147(00)01447-4
  13. Mahjoubin-Tehran M, Aghaee-Bakhtiari SH, Sahebkar A, Oskuee RK, Kesharwani P, Jalili A. 2022. In silico and experimental validation of a new modified arginine-rich cell penetrating peptide for plasmid DNA delivery. Int. J. Pharm. 624:122005.
  14. Ma W, Jin GW, Gehret PM, Chada NC, Suh WH. 2018. A novel cell penetrating peptide for the differentiation of human neural stem cells. Biomolecules 8:48.
  15. Meade BR and Dowdy SF. 2007. Exogenous siRNA delivery using peptide transduction domains/cell penetrating peptides. Adv. Drug Deliv. Rev. 59:134-140. https://doi.org/10.1016/j.addr.2007.03.004
  16. Menjoge AR, Rinderknecht AL, Navath RS, Faridnia M, Kim CJ, Romero R, Miller RK, Kannan RM. 2011. Transfer of PAMAM dendrimers across human placenta: prospects of its use as drug carrier during pregnancy. J. Control. Release 150:326-338. https://doi.org/10.1016/j.jconrel.2010.11.023
  17. Milletti F. 2012. Cell-penetrating peptides: classes, origin, and current landscape. Drug Discov. Today 17:850-860. https://doi.org/10.1016/j.drudis.2012.03.002
  18. Min S, Kim K, Ku S, Park JY, Seo J, Roh S. 2020. Newly synthesized peptide, Ara-27, exhibits significant improvement in cell-penetrating ability compared to conventional peptides. Biotechnol. Prog. 36:e3014.
  19. Moulton HM. 2013. In vivo delivery of morpholino oligos by cell-penetrating peptides. Curr. Pharm. Des. 19:2963-2969. https://doi.org/10.2174/1381612811319160010
  20. Nakayama F, Umeda S, Yasuda T, Fujita M, Asada M, Meineke V, Imamura T, Imai T. 2014. Cellular internalization of fibroblast growth factor-12 exerts radioprotective effects on intestinal radiation damage independently of FGFR signaling. Int. J. Radiat. Oncol. Biol. Phys. 88:377-384. https://doi.org/10.1016/j.ijrobp.2013.10.035
  21. Park SK, Roh S, Park JI. 2014. A simplified one-step nuclear transfer procedure alters the gene expression patterns and developmental potential of cloned porcine embryos. J. Vet. Sci. 15:73-80. https://doi.org/10.4142/jvs.2014.15.1.73
  22. Rattanapinyopituk K, Shimada A, Morita T, Sakurai M, Asano A, Hasegawa T, Inoue K, Takano H. 2014. Demonstration of the clathrin- and caveolin-mediated endocytosis at the maternal-fetal barrier in mouse placenta after intravenous administration of gold nanoparticles. J. Vet. Med. Sci. 76:377-387. https://doi.org/10.1292/jvms.13-0512
  23. Said Hassane F, Saleh AF, Abes R, Gait MJ, Lebleu B. 2010. Cell penetrating peptides: overview and applications to the delivery of oligonucleotides. Cell. Mol. Life Sci. 67:715-726. https://doi.org/10.1007/s00018-009-0186-0
  24. Soler M, Gonzalez-Bartulos M, Soriano-Castell D, Ribas X, Costas M, Tebar F, Massaguer A, Feliu L, Planas M. 2014. Identification of BP16 as a non-toxic cell-penetrating peptide with highly efficient drug delivery properties. Org. Biomol. Chem. 12:1652-1663. https://doi.org/10.1039/C3OB42422G
  25. Srimanee A, Arvanitidou M, Kim K, Hallbrink M, Langel U. 2018. Cell-penetrating peptides for siRNA delivery to glioblastomas. Peptides 104:62-69. https://doi.org/10.1016/j.peptides.2018.04.015
  26. Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. 2021. Engineered nanoparticles for drug delivery in cancer therapy. In: Voliani V (Ed.), Nanomaterials and Neoplasms: Towards Clinical Applications, Jenny Stanford Publishing, New York, pp. 31-142.
  27. Su Y, Xie Z, Kim GB, Dong C, Yang J. 2015. Design strategies and applications of circulating cell-mediated drug delivery systems. ACS Biomater. Sci. Eng. 1:201-217. https://doi.org/10.1021/ab500179h
  28. Wu X and Guy RH. 2009. Applications of nanoparticles in topical drug delivery and in cosmetics. J. Drug Deliv. Sci. Technol. 19:371-384. https://doi.org/10.1016/S1773-2247(09)50080-9
  29. Ye J, Liu E, Gong J, Wang J, Huang Y, He H, Yang VC. 2017. Highyield synthesis of monomeric LMWP(CPP)-siRNA covalent conjugate for effective cytosolic delivery of siRNA. Theranostics 7:2495-2508. https://doi.org/10.7150/thno.19863
  30. Yokoo H, Oba M, Uchida S. 2021. Cell-penetrating peptides: emerging tools for mRNA delivery. Pharmaceutics 14:78.
  31. Zununi Vahed S, Fathi N, Samiei M, Maleki Dizaj S, Sharifi S. 2019. Targeted cancer drug delivery with aptamer-functionalized polymeric nanoparticles. J. Drug Target. 27:292-299. https://doi.org/10.1080/1061186x.2018.1491978