DOI QR코드

DOI QR Code

Development of an optimal protocol to induce capacitation of boar spermatozoa in vitro

  • Seung-Ik, Jang (Department of Animal Science and Biotechnology, Kyungpook National University) ;
  • Jae-Hwan, Jo (Department of Animal Biotechnology, Kyungpook National University) ;
  • Eun-Ju, Jung (Department of Animal Science and Biotechnology, Kyungpook National University) ;
  • Woo-Jin, Lee (Department of Animal Science and Biotechnology, Kyungpook National University) ;
  • Ju-Mi, Hwang (Department of Animal Science and Biotechnology, Kyungpook National University) ;
  • Jeong-Won, Bae (Department of Animal Science and Biotechnology, Kyungpook National University) ;
  • Woo-Sung, Kwon (Department of Animal Science and Biotechnology, Kyungpook National University)
  • Received : 2022.09.19
  • Accepted : 2022.12.08
  • Published : 2022.12.31

Abstract

In 1951, Colin Russell Austin and Min Chueh Chang identified "capacitation", a special process involving ejaculated spermatozoa in the female reproductive tract. Capacitation is a phenomenon that occurs in vivo, but almost all knowledge of capacitation has been obtained from in vitro studies. Therefore, numerous trials have been performed to establish in vitro capacitation methods for various studies on reproduction. Although a series of studies have been conducted to develop an optimal protocol for inducing capacitation, most have focused on identifying the appropriate chemical compounds to induce the capacitation of boar spermatozoa in vitro. Therefore, the purpose of this study was to identify the optimal incubation time for inducing capacitation in vitro. Duroc semen was incubated for various periods (60, 90, and 120 min) to induce capacitation. Sperm function (sperm motility, motion kinematic parameters, and capacitation status) was evaluated. The results showed that total sperm motility, rapid sperm motility, progressive sperm motility, curvilinear velocity, and average path velocity significantly decreased in a time-dependent manner. However, the capacitation status did not show any significant changes. Taken together, these results indicate that an incubation time of more than 60 min suppresses sperm motility and motion kinematic parameters. Therefore, we suggest that 60 min may be the best incubation time to induce capacitation without negative effects on sperm motility and motion kinematics in boar spermatozoa in vitro.

Keywords

Acknowledgement

This study was conducted with the support of the Gyeongsangbuk-do agricultural and fishery R&D activation project.

References

  1. Alavi SM and Cosson J. 2005. Sperm motility in fishes. I. Effects of temperature and pH: a review. Cell Biol. Int. 29:101-110. https://doi.org/10.1016/j.cellbi.2004.11.021
  2. Austin CR. 1951. Observations on the penetration of the sperm in the mammalian egg. Aust. J. Sci. Res. B 4:581-596. https://doi.org/10.1071/BI9510581
  3. Austin CR. 1952. The capacitation of the mammalian sperm. Nature 170:326.
  4. Bae JW, Im H, Hwang JM, Kim SH, Ma L, Kwon HJ, Kim E, Kim MO, Kwon WS. 2020. Vanadium adversely affects sperm motility and capacitation status via protein kinase A activity and tyrosine phosphorylation. Reprod. Toxicol. 96:195-201. https://doi.org/10.1016/j.reprotox.2020.07.002
  5. Bae JW, Kim SH, Kim DH, Ha JJ, Yi JK, Hwang S, Ryu BY, Pang MG, Kwon WS. 2019. Ras-related proteins (Rab) are key proteins related to male fertility following a unique activation mechanism. Reprod. Biol. 19:356-362. https://doi.org/10.1016/j.repbio.2019.10.001
  6. Bae JW, Yi JK, Jeong EJ, Lee WJ, Hwang JM, Kim DH, Ha JJ, Kwon WS. 2022. Ras-related proteins (Rab) play significant roles in sperm motility and capacitation status. Reprod. Biol. 22:100617.
  7. Bae JW and Kwon WS. 2020. Investigating the effects of fipronil on male fertility: insight into the mechanism of capacitation. Reprod. Toxicol. 94:1-7. https://doi.org/10.1016/j.reprotox.2020.04.002
  8. Bailey JL. 2010. Factors regulating sperm capacitation. Syst. Biol. Reprod. Med. 56:334-348. https://doi.org/10.3109/19396368.2010.512377
  9. Baker MA, Nixon B, Naumovski N, Aitken RJ. 2012. Proteomic insights into the maturation and capacitation of mammalian spermatozoa. Syst. Biol. Reprod. Med. 58:211-217. https://doi.org/10.3109/19396368.2011.639844
  10. Banerjee M and Chowdhury M. 1995. Induction of capacitation in human spermatozoa in vitro by an endometrial sialic acid-binding protein. Hum. Reprod. 10:3147-3153. https://doi.org/10.1093/oxfordjournals.humrep.a135877
  11. Byrd W. 1981. In vitro capacitation and the chemically induced acrosome reaction in bovine spermatozoa. J. Exp. Zool. 215:35-46. https://doi.org/10.1002/jez.1402150105
  12. Chang MC. 1951. Fertilizing capacity of spermatozoa deposited into the fallopian tubes. Nature 168:697-698. https://doi.org/10.1038/168697b0
  13. Dapino DG, Marini PE, Cabada MO. 2006. Effect of heparin on in vitro capacitation of boar sperm. Biol. Res. 39:631-639. https://doi.org/10.4067/S0716-97602006000500006
  14. de Angelis C, Galdiero M, Pivonello C, Garifalos F, Menafra D, Cariati F, Salzano C, Galdiero G, Piscopo M, Vece A, Colao A, Pivonello R. 2017. The role of vitamin D in male fertility: a focus on the testis. Rev. Endocr. Metab. Disord. 18:285-305. https://doi.org/10.1007/s11154-017-9425-0
  15. de Lamirande E, Leclerc P, Gagnon C. 1997. Capacitation as a regulatory event that primes spermatozoa for the acrosome reaction and fertilization. Mol. Hum. Reprod. 3:175-194. https://doi.org/10.1093/molehr/3.3.175
  16. Fortes MR, Deatley KL, Lehnert SA, Burns BM, Reverter A, Hawken RJ, Boe-Hansen G, Moore SS, Thomas MG. 2013. Genomic regions associated with fertility traits in male and female cattle: advances from microsatellites to high-density chips and beyond. Anim. Reprod. Sci. 141:1-19. https://doi.org/10.1016/j.anireprosci.2013.07.002
  17. Gonzalez-Rodriguez LG, Lopez-Sobaler AM, Perea Sanchez JM, Ortega RM. 2018. Nutricion y fertilidad [Nutrition and fertility]. Nutr. Hosp. 35:7-10.
  18. Herreros MG, Aparicio I, Nunez I, Garcia-Marin L, Gil M, Vega FP. 2005. Boar sperm velocity and motility patterns under capacitating and non-capacitating incubation conditions. Theriogenology 63:795-805. https://doi.org/10.1016/j.theriogenology.2004.05.003
  19. Hwang JM, Bae JW, Jung EJ, Lee WJ, Kwon WS. 2021. Novaluron has detrimental effects on sperm functions. Int. J. Environ. Res. Public Health 19:61.
  20. Jamsai D and O'Bryan MK. 2011. Mouse models in male fertility research. Asian J. Androl. 13:139-151. https://doi.org/10.1038/aja.2010.101
  21. Jin SK and Yang WX. 2017. Factors and pathways involved in capacitation: how are they regulated? Oncotarget 8:3600-3627. https://doi.org/10.18632/oncotarget.12274
  22. Kidder BL. 2014. In vitro maturation and in vitro fertilization of mouse oocytes and preimplantation embryo culture. Methods Mol. Biol. 1150:191-199. https://doi.org/10.1007/978-1-4939-0512-6_12
  23. Kwon WS, Rahman MS, Lee JS, Kim J, Yoon SJ, Park YJ, You YA, Hwang S, Pang MG. 2014. A comprehensive proteomic approach to identifying capacitation related proteins in boar spermatozoa. BMC Genomics 15:897.
  24. Kwon WS, Rahman MS, Ryu DY, Park YJ, Pang MG. 2015. Increased male fertility using fertility-related biomarkers. Sci. Rep. 5:1565.
  25. Lee WJ, Jung EJ, Hwang JM, Bae JW, Kwon WS. 2022. GRP78 plays a key role in sperm function via the PI3K/PDK1/AKT pathway. Reprod. Toxicol. 113:103-109. https://doi.org/10.1016/j.reprotox.2022.08.008
  26. Naz RK and Rajesh PB. 2004. Role of tyrosine phosphorylation in sperm capacitation / acrosome reaction. Reprod. Biol. Endocrinol. 2:75.
  27. Park YJ, Kim J, You YA, Pang MG. 2013. Proteomic revolution to improve tools for evaluating male fertility in animals. J. Proteome Res. 12:4738-4747. https://doi.org/10.1021/pr400639x
  28. Peddinti D, Nanduri B, Kaya A, Feugang JM, Burgess SC, Memili E. 2008. Comprehensive proteomic analysis of bovine spermatozoa of varying fertility rates and identification of biomarkers associated with fertility. BMC Syst. Biol. 2:19.
  29. Romar R, Canovas S, Matas C, Gadea J, Coy P. 2019. Pig in vitro fertilization: where are we and where do we go? Theriogenology 137:113-121. https://doi.org/10.1016/j.theriogenology.2019.05.045
  30. Romar R, Funahashi H, Coy P. 2016. In vitro fertilization in pigs: new molecules and protocols to consider in the forthcoming years. Theriogenology 85:125-134. https://doi.org/10.1016/j.theriogenology.2015.07.017
  31. Rubessa M, Boccia L, Di Francesco S. 2019. In vitro embryo production in buffalo species (Bubalus bubalis). Methods Mol. Biol. 2006:179-190.
  32. Ryu DY, Kim YJ, Lee JS, Rahman MS, Kwon WS, Yoon SJ, Pang MG. 2014. Capacitation and acrosome reaction differences of bovine, mouse and porcine spermatozoa in responsiveness to estrogenic compounds. J. Anim. Sci. Technol. 56:26.
  33. Saez-Espinosa P, Huerta-Retamal N, Robles-Gomez L, Aviles M, Aizpurua J, Velasco I, Romero A, Gomez-Torres MJ. 2020. Influence of in vitro capacitation time on structural and functional human sperm parameters. Asian J. Androl. 22:447-453. https://doi.org/10.4103/aja.aja_104_19
  34. Watson PF. 2000. The causes of reduced fertility with cryopreserved semen. Anim. Reprod. Sci. 60-61:481-492. https://doi.org/10.1016/S0378-4320(00)00099-3
  35. Wattimena J. 2006. Pengaruh waktu inkubasi terhadap pola kapasitasi dan reaksi akrosom spermatozoa domba in vitro [The effect of incubation time on capacitation and acrosome reaction of in vitro ovine spermatozoa]. J. Ilmu Ternak Vet. 11:295-301.
  36. You YA, Kwon WS, Saidur Rahman M, Park YJ, Kim YJ, Pang MG. 2017. Sex chromosome-dependent differential viability of human spermatozoa during prolonged incubation. Hum. Reprod. 32:1183-1191. https://doi.org/10.1093/humrep/dex080
  37. Zigo M, Manaskova-Postlerova P, Zuidema D, Kerns K, Jonakova V, Tumova L, Bubenickova F, Sutovsky P. 2020. Porcine model for the study of sperm capacitation, fertilization and male fertility. Cell Tissue Res. 380:237-262. https://doi.org/10.1007/s00441-020-03181-1