DOI QR코드

DOI QR Code

병치된 변형률 계측치를 이용한 프리팹 PSC 거더 캠버 재구성

Camber Reconstruction for a Prefab PSC Girder Using Collocated Strain Measurements

  • 김현영 ((주)디엠엔지니어링 설계실) ;
  • 고도현 (동아대학교 ICT융합해양스마트시티공학과) ;
  • 박현우 (동아대학교 ICT융합해양스마트시티공학과)
  • 투고 : 2021.11.21
  • 심사 : 2022.01.11
  • 발행 : 2022.04.01

초록

스마트 건설 기술의 도입으로 공장에서 일괄 대량생산이 가능한 프리팹 부재에 대한 관심이 높아졌다. 프리팹 프리스트레스 콘크리트 거더는 가설시 프리팹 바닥판과의 정합성을 위해 제작부터 가설 전 단계까지 거더의 형상관리가 중요하다. 이 연구에서는 프리팹 거더의 상연 및 하연에 병치된 변형률 측정치를 이용한 캠버 재구성 기법을 제시한다. 특히, 긴장력 도입 이후 가설 전까지 콘크리트의 시간 의존적 거동이 고려된 변형률 데이터에 대해 캠버 재구성 기법을 적용한다. 몬테카를로 수치 모사를 통해 제한된 센서의 개수, 계측 오차 그리고 비선형적 시간 의존적 거동들에 대해 재구성된 캠버의 통계적 정확도를 분석하고 타당성을 검증한다.

Prefab members have attracted attention because they can be mass-produced in factories through smart construction technology. For prefab prestressed concrete girders, it is important to manage the shapes of the girders properly from production to the pre-installation stage for consistency with the prefab floor plate during the erection process. This paper presents a camber reconstruction method using collocated strain measurements from the top and bottom of the prefab girder. In particular, the camber reconstruction method is applied to measured strain data in which the time-dependent behavior of concrete is considered after the introduction of prestress. Through Monte Carlo numerical simulations, the statistical accuracy of the reconstructed camber for a limited number of sensors, measurement errors, and nonlinear time-dependent behaviors are analyzed and validated.

키워드

과제정보

본 연구는 국토교통부/국토교통과학기술진흥원이 시행하고 한국도로공사가 총괄하는 "스마트건설기술개발 국가R&D사업(21SMIP-A158708-02)"의 지원으로 수행되었습니다. 본 논문은 2021 CONVENTION 논문을 수정·보완하여 작성되었습니다.

참고문헌

  1. Chung, W. S., Kim, S. I., Kim, N. S. and Lee, H. U. (2008). "Deflection estimation of a full scale prestressed concrete girder using long-gauge fiber optic sensors." Construction and Building Materials, Vol. 22, No. 3, pp. 394-401. https://doi.org/10.1016/j.conbuildmat.2006.08.007
  2. Culmo, M. P., Halling, M. W., Maguire, M. and Mertz, D. (2017). Recommended guidelines for prefabricated bridge elements and systems tolerances and recommended guidelines for dynamic effects for bridge systems (No. NCHRP Project 12-98).
  3. Glaser, R., Caccese, V. and Shahinpoor, M. (2012). "Shape monitoring of a beam structure from measured strain or curvature." Experimental Mechanics, Vol. 52, No. 6, pp. 591-606. https://doi.org/10.1007/s11340-011-9523-y
  4. Gregory, A., Lau, F. D. H., Girolami, M., Butler, L. J. and Elshafie, M. Z. E. B. (2019). "The synthesis of data from instrumented structures and physics-based models via Gaussian processes." Journal of Computational Physics, Vol. 392, pp. 248-265. https://doi.org/10.1016/j.jcp.2019.04.065
  5. Kang, L. H., Kim, D. K. and Han, J. H. (2007). "Estimation of dynamic structural displacements using fiber Bragg grating strain sensors." Journal of Sound and Vibration, Vol. 305, No. 3, pp. 534-542. https://doi.org/10.1016/j.jsv.2007.04.037
  6. Khan, S., Won, J. B., Shin, J. S., Park, J. Y., park, J. W., Kim, S. E., Jang, Y. and Kim, D. J (2021). "SSVM: An ultra-low-power strain sensing and visualization module for long-term structural health monitoring." Sensors, Vol. 21, No.6, pp. 2211.
  7. Kim, T. H., Choi, J. H., Choi, K. R. and Shin, H. M. (2003). "An analytical study on the time-dependent behavior of prestressed concrete structures." Proceedings of the Korean Society of Civil Engineers A, Vol. 23, No. 5A, pp. 869-875 (in Korean).
  8. Kliewer, K. and Glisic, B. (2019). "A comparison of strain-based methods for the evaluation of the relative displacement of beam-like structures." Frontiers in Built Environment, Vol. 5, pp. 118. https://doi.org/10.3389/fbuil.2019.00118
  9. Korea Concrete Institute (KCI) (2012). Concrete design code KCI-USD12 (in Korean).
  10. Li, L., Zhong, B. S., Li, W. Q., Sun, W. and Zhu, X. J. (2018). "Structural shape reconstruction of fiber Bragg grating flexible plate based on strain modes using finite element method." Journal of Intelligent Material Systems and Structures, Vol. 29, No. 4, pp. 463-478. https://doi.org/10.1177/1045389X17708480
  11. Luo, Z., Li, J., Hong, G. and Li, H. (2020). "Strain-based displacement field reconstruction method for thin rectangular plate through orthogonal deflection curves bridging." Structural Control and Health Monitoring, Vol. 27, No. 1, pp. e2457. https://doi.org/10.1002/stc.2457
  12. Moon, H. S., Ok, S. Y., Chun, P. J. and Lim, Y. M. (2019). "Artificial neural network for vertical displacement prediction of a bridge from strains (Part 1): Girder bridge under moving vehicles." Applied Sciences, Vol. 9, No. 14, pp. 2881. https://doi.org/10.3390/app9142881
  13. Palma, P. D., Palumbo, G., Pietra, M. D., Canale, V., Alviggi, M., Iadicicco, A. and Campopiano, S. (2019). "Bi-dimensional deflection estimation by embedded fiber bragg gratings sensors." Multidisciplinary Digital Publishing Institute Proceedings, Vol. 15, No. 1.
  14. Park, J. W., Sim, S. H. and Jung, H. J. (2013). "Displacement estimation using multimetric data fusion." IEEE/ASME Transactions On Mechatronics, Vol. 18, No. 6, pp. 1675-1682. https://doi.org/10.1109/TMECH.2013.2275187
  15. Park, M. H., Park, S. E., Kim, J. K., Park, J. H., Kim, B. N. and Lee, S. Y. (2010). "Time-dependent analysis of prestress concrete bridge considering creep and shrinkage." Proceedings of the Korean Society for Industrial Convergence, Vol. 13, No. 3, pp. 125-131 (in Korean).
  16. Shen, S. and Jiang, S. F. (2018). "Distributed deformation monitoring for a single-cell box girder based on distributed long-gage fiber bragg grating sensors." Sensors, Vol. 18, No. 8, pp. 2597. https://doi.org/10.3390/s18082597
  17. Shin, H. M. (2008). Prestressed concrete, 9th edition, Dongmyeongsa (in Korean).
  18. Song, J. H., Lee, E. T. and Eun, H. C. (2021). "Optimal sensor placement through expansion of static strain measurements to static displacements." International Journal of Distributed Sensor Networks, Vol. 17, No. 1, 1550147721991712.
  19. Vurpillot, S., Krueger, G., Benouaich, D., Clement, D. and Inaudi, D. (1998). "Vertical deflection of a pre-stressed concrete bridge obtained using deformation sensors and inclinometer." ACI Structural Journal, Vol. 95, No. 5, pp. 518-526.
  20. Wang, Z., Duan, D., Yu, H., Xin, Y. and Li, F. (2021). "Local bending deformation monitoring of bi-dimensional bridge deck based on the displacement-strain transfer matrix." Journal of Civil Structural Health Monitoring, Vol. 11, No. 3, pp. 809-832. https://doi.org/10.1007/s13349-021-00485-w
  21. Xia, Y., Zhang, P., Ni, Y. and Zhu, H. (2014). "Deformation monitoring of a super-tall structure using real-time strain data." Engineering Structures, Vol. 67, pp. 29-38. https://doi.org/10.1016/j.engstruct.2014.02.009
  22. Xu, H., Ren, W. X. and Wang, Z. C. (2015). "Deflection estimation of bending beam structures using fiber bragg grating strain sensors." Advances in Structural Engineering, Vol. 18, No. 3, pp. 395-403. https://doi.org/10.1260/1369-4332.18.3.395
  23. Yau, M. H., Chan, T. H. T., Thambiratnam, D. P. and Tam, H. Y. (2013). "Static vertical displacement measurement of bridges using fiber Bragg grating (FBG) sensors." Advances in Structural Engineering, Vol. 16, No. 1, pp. 165-176. https://doi.org/10.1260/1369-4332.16.1.165
  24. Zhang, Q., Sun, T., Wang, J. and Liu, Q. (2019). "Deflection distribution estimation of the main arch of arch bridges based on long-gauge fiber optic sensing technology." Advances in Structural Engineering, Vol. 22, No. 15, pp. 3341-3351. https://doi.org/10.1177/1369433219862433