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DUADIC CODES OVER FINITE LOCAL RINGS

Arezoo Soufi Karbaski and Karim Samei

Abstract. In this paper, we introduce duadic codes over finite local

rings and concentrate on quadratic residue codes. We study their prop-

erties and give the comprehensive method for the computing the unique
idempotent generator of quadratic residue codes.

1. Introduction

Duadic codes over finite fields form an important class of cyclic codes. These
codes were first introduced by Leon et al. and they became a widely popular
research field in coding theory [3]. Duadic codes generalize quadratic residue
codes to composite lengths. In continuation of researches on the quadratic
residue codes over Z4, Z8 and Z9 (see [1], [6] and [8]), we study the construction
of duadic codes over finite local rings. By using the extended quadratic residue
codes over a local ring R with residue field Fq and a Gray map that preserves
self-duality, we can obtain self-dual codes over Fq which can not be obtaind
from the extended quadratic residue codes over Fq.

In Section 2, we state some preliminaries of cyclic codes over finite local rings.
In Section 3, we define duadic codes and specially quadratic residue codes over
finite local rings. We also study the structure of the extended quadratic residue
codes and obtain a method for the computing the unique idempotent generator
of quadratic residue codes over finite local rings. In Section 4, we present the
examples of quadratic residue codes over finite local rings.

2. Preliminaries

Throughout this paper R is a finite local ring with maximal ideal M , the
residue field Fq = R

M and µ is the natural projection R[x]→ Fq[x]. A polyno-

mial e(x) in R[x] is an idempotent if e2(x) = e(x). A linear code C over ring
R of length n is a R-submodule of Rn. A generator matrix for a linear code
C is a matrix G whose rows generate C. The Hamming weight of a codeword
is the number of non-zero components.
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Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be two elements of Rn. The
Euclidean inner product of vectors x,y is [x,y] =

∑n
i=1 xiyi. The dual code

C⊥ of C with respect to the Euclidean inner product is defined as

C⊥ = {x∈ Rn : [x,y] = 0 for all y ∈ C}.

A code C is self-orthogonal provided C ⊆ C⊥, self-dual provided C = C⊥, and
complementary-dual (LCD) provided C ∩ C⊥ = {0}. Note that, if C is a code
of length n over R, then a complement of C is a code D such that C +D = Rn

and C ∩D = {0}. A linear code C of length n over R is said to be cyclic if for
any codeword c ∈ C, we have:

c = (c0, c1, . . . , cn−2, cn−1) ∈ C implies that (cn−1, c0, c1, . . . , cn−2) ∈ C.

Such a code can be represented as an ideal of the quotient ring Rn = R[x]
〈xn−1〉 .

Also the map µ can be extended to the map µ from R[x]
〈xn−1〉 to

Fq [x]
〈xn−1〉 . Inasmuch

as µ is an epimorphism, we have Ce = µ(C).
Let a be an integer such that gcd(a, n) = 1. The function µa defined on

{0, 1, 2, . . . , n − 1} by µa(i) ≡ ai (mod n) is a permutation of the coordinate
positions {0, 1, 2, . . . , n−1} of a cyclic code of length n and is called a multiplier.
A multiplier takes a cyclic code into an equivalent cyclic code.

A code is even-like if it has only even-like codewords; a code is odd-like if
it is not even-like (A vector x = (x0, x1, . . . , xn−1) in Rn is even-like provided

that
∑n−1

i=0 xi = 0).
xn − 1 has no repeated factors in Fq[x] if and only if gcd(n, q) = 1, an

assumption we make throughout this paper. The following theorem is well
known, see [4, Theorem XIII.4].

Proposition 2.1 (Hensel’ Lemma). Let F (x) be in R[x] and µ(F (x)) =
g1(x) · · · gt(x), where g1(x), . . . , gt(x) are pair-wise coprime. Then there ex-
ist G1(x), . . . , Gt(x) in R[x] such that

(1) G1(x),. . . ,Gt(x) are pair-wise coprime;
(2) µ(Gi(x)) = gi(x), 1 ≤ i ≤ t;
(3) F (x) = G1(x) · · ·Gt(x).

Now we have the following definition, see [5].

Definition 2.2 (Hensel lift of a cyclic code). Let g(x) ∈ Fq[x] be a monic
polynomial and g(x) | xn − 1. The cyclic code 〈G(x)〉 such that G(x) is the
Hensel lift of g(x) is called the Hensel lift of the cyclic code 〈g(x)〉 and is
denoted by Cl.

Thus the Hensel lift of the cyclic code is a cyclic code with a monic generator
polynomial. With the notation as in Definition 2.2, the following lemma holds.

Lemma 2.3. Let C be a cyclic code of length n over Fq with generator poly-

nomial g(x). Then Cl⊥ = C⊥
l
.
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Proof. Let C be a cyclic code of length n over Fq with generator polynomial

g(x) such that xn − 1 = g(x)h(x) in Fq[x]. Then Cl⊥ = 〈H∗(x)〉 such that
xn − 1 = G(x)H(x) in R[x] and µ(G(x)) = g(x) and µ(H(x)) = h(x). Also we

have C⊥
l

= 〈H∗(x)〉. Thus Cl⊥ = C⊥
l
. �

Proposition 2.4 ([8]). Let R be a finite commutative ring with identity and
let t(x) be the idempotent generator of a cyclic code C. Then 1− t(x−1) is the
idempotent generator of the dual code C⊥.

Proposition 2.5 ([8]). Let R be a finite commutative ring with identity and
let t1(x), t2(x) be idempotents of R. If C1 = 〈t1(x)〉, C2 = 〈t2(x)〉 are cyclic
codes over R, then C1 ∩C2 and C1 +C2 have idempotent generators t1(x)t2(x)
and t1(x) + t2(x)− t1(x)t2(x), respectively.

The proof of the following theorem is similar to [1, Theorem 2.0.1], so we
omit the proof here.

Proposition 2.6. Let G(x) be a monic polynomial divisor of xn− 1 in R and
C = 〈G(x)〉. Then the code C of R has a unique idempotent generator.

Lemma 2.7. Let e(x) be an idempotent polynomial in
Fq [x]
〈xn−1〉 . If E(x) and

E′(x) are two idempotent polynomials in Rn such that µ(E(x)) = µ(E′(x)) =
e(x), then E(x) = E′(x).

Proof. If µ(E(x)) = µ(E′(x)) = e(x), then µ(E′(x)E(x) − E′(x)) = 0. Hence
xn − 1 | µ(E′(x)E(x)− E′(x)) and there exists H(x) ∈ R[x] such that

µ(E′(x)E(x)− E′(x)−H(x)(xn − 1)) = 0.

This equation implies that there exists m ∈ N such that

(E′(x)E(x)− E′(x)−H(x)(xn − 1))
m

= 0,

see [4, Theorem XIII.2]. Hence E′(x)E(x) − E′(x) is nilpotent. On the
other hand, (E′(x)E(x)−E′(x))2 = −(E′(x)E(x)−E′(x)). This implies that
E′(x)E(x) = E′(x). Similarly, E′(x)E(x) = E(x). Thus E(x) = E′(x). �

Note that if C is a cyclic code over R with idempotent generator E(x), then
C is a self-orthogonal code if and only if C ∩ C⊥ = C, this is the case if and
only if E(x)(1 − µ−1(E(x))) = E(x) by Propositions 2.4 and 2.5. Also C is a
self-dual code over R if and only if E(x) = 1 − µ−1(E(x)). Now we have the
following theorem.

Proposition 2.8. Let C be a cyclic code of length n over Fq with idempotent
generator e(x). Then the following statements hold.

(1) C is self-orthogonal code over Fq if and only if Cl is a self-orthogonal
code over R;

(2) C is self-dual code over Fq if and only if Cl is a self-dual code over R.
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Proof. Let E(x) be the idempotent generator of Cl. It is sufficient to show
that E(x)(1 − µ−1(E(x))) = E(x) if and only if e(x)(1 − µ−1(e(x))) = e(x).
If e(x)(1− µ−1(e(x))) = e(x), then µ(E(x)(1− µ−1(E(x)))) = µ(E(x)) which
means that E(x)(1 − µ−1(E(x))) = E(x) by Lemma 2.7. On the other hand
if E(x)(1 − µ−1(E(x))) = E(x), then e(x)(1 − µ−1(e(x))) = µ(E(x)(1 −
µ−1(E(x)))) = µ(E(x)) = e(x). Therefore part (1) was proved. Similarly,
E(x) = 1 − µ−1(E(x)) if and only if e(x) = 1 − µ−1(e(x)). Then the proof is
complete. �

3. Duadic codes

Let C1, C2 and D1, D2 be even-like and odd-like duadic codes over Fq,
respectively, such that e1(x) and e2(x) are the idempotent generators of [n, n−12 ]
duadic codes over Fq and 1−e2(x) and 1−e1(x) are the idempotent generators
of [n, n+1

2 ] duadic codes over Fq such that

e1(x) + e2(x) = 1− j(x)

and there is a multiplier µa such that

µa(e1(x)) = e2(x) and µa(e2(x)) = e1(x).

We note that j(x) = 1
p (1 + x + x2 + · · · + xp−1) in

Fq [x]
〈xp−1〉 is the idempotent

generator of repetition code of length p, see [2, Ch. 6]. We define duadic codes
over finite local rings in term of their idempotents.

Definition 3.1. Duadic codes over R come in two pairs, one even-like pair,
which we usually denote C ′1 and C ′2, and one odd-like pair, usually denoted D′1
and D′2 such that C ′i and D′i are Hensel lifts of duadic codes over Fq for i = 1, 2.

Note that j′(x) = 1
p (1 + x+ x2 + · · ·+ xp−1) is an idempotent in Rp.

Theorem 3.2. Let C ′1 and C ′2 be a pair of even-like duadic codes over R with
idempotent generators E1(x) and E2(x), respectively. Then

(1) E1(x) + E2(x) = 1− j′(x) and
(2) there is a multiplier µa such that µa(C ′1) = C ′2 and µa(C ′2) = C ′1.

Proof. Let C1 and C2 be even-like duadic codes over Fq with idempotent gen-
erators e1(x) and e2(x), respectively. To prove the first part it is sufficient to
prove that E1(x)E2(x) = 0. Since µ(E1(x)E2(x)) = e1(x)e2(x) = 0 = µ(0),
then by Lemma 2.7, E1(x)E2(x) = 0. It follows that E1(x) + E2(x) is an
idempotent. By Lemma 2.7, E1(x) +E2(x) = 1− j′(x), because µ(1− j′(x)) =
1 − j(x) = e1(x) + e2(x) = µ(E1(x) + E2(x)). Therefore part (1) was proved.
Since C1 and C2 are even-like duadic codes over Fq, then there is a multi-
plier µa such that µa(e1(x)) = e2(x) and µa(e2(x)) = e1(x). Inasmuch as
µ(µa(E1(x))) = e2(x) and µ(µa(E2(x))) = e1(x), hence µa(E1(x)) = E2(x)
and µa(E2(x)) = E1(x). �

By Definition 3.1 and [2, Corollary 6.3.2], we have the following theorem.
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Theorem 3.3. Duadic codes of length n over R exist if and only if q is a
square modulo n.

Corollary 3.4. Let C ′1 and C ′2 be even-like duadic codes over R with idem-
potent generators E1(x) and E2(x). Then 1 − E2(x) and 1 − E1(x) are the
idempotent generators of odd-like duadic codes over R.

Proof. Let E′1(x) and E′2(x) be the idempotent generators of D′1 and D′2 over
R. Since 〈µ(E′1(x))〉 = µ(D′1) = D1 = 〈1− e2(x)〉 and µ(E′1(x)) is idempotent
polynomial, then µ(E′1(x)) = 1− e2(x). From Lemma 2.7, E′1(x) = 1−E2(x).
Similarly, E′2(x) = 1− E1(x). �

It is obvious that C ′1 and D′1 are equivalent to C ′2 and D′2, respectively. Also
it is easy to see that C ′1 ⊆ D′1 and C ′2 ⊆ D′2.

Theorem 3.5. If µa gives the splitting for C ′1 and C ′2, then the following
statements hold.

(1) E1(x)E2(x) = 0;
(2) C ′1 ∩ C ′2 = {0} and C ′1 + C ′2 = 〈1− j′(x)〉;
(3) |C ′i| = |R|

n−1
2 and |D′i| = |R|

n+1
2 ;

(4) D′1 is the cyclic complement of C ′2 and D′2 is the cyclic complement of
C ′1;

(5) µa(D′1) = D′2 and µa(D′2) = D′1;
(6) D′1 ∩D′2 = 〈j′(x)〉 and D′1 +D′2 = Rn;
(7) D′i = C ′i + 〈j′(x)〉 = 〈j′(x) + Ei(x)〉, where i = 1, 2.

Proof. (1) See the proof of Theorem 3.2.
(2) By Proposition 2.5 and part (1) above, C ′1 ∩ C ′2 = 〈E1(x)E2(x)〉 = {0}

and C ′1 + C ′2 = 〈E1(x) + E2(x)− E1(x)E2(x)〉 = 〈1− j′(x)〉.
(3) Since dim(Ci) = n−1

2 and dim(Di)=
n+1
2 , we conclude part (3) from

Definition 3.1.
(4) To prove this part, we can use Proposition 2.5 and Corollary 3.4.
(5) This part is obtained from the following equations

µa(D′1) = 〈µa(1− E2(x))〉 = 〈1− E1(x)〉 = D′2

and

µa(D′2) = 〈µa(1− E1(x))〉 = 〈1− E2(x)〉 = D′1.

(6) By Proposition 2.5,

D′1 ∩D′2 = 〈(1− E2(x))(1− E1(x))〉 = 〈1− E1(x)− E2(x)〉 = 〈j′(x)〉

and

D′1 +D′2 = 〈(1− E2(x)) + (1− E1(x))− j′(x)〉 = 〈1〉 = Rn.

(7) Inasmuch as Ei(x)j′(x) = Ei(x)(1 − E1(x) − E2(x)) = 0 for i = 1, 2,
hence

D′1 = 〈1− E2(x)〉 = 〈j′(x) + E1(x)〉 = C ′1 + 〈j′(x)〉
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and
D′2 = 〈1− E1(x)〉 = 〈j′(x) + E2(x)〉 = C ′2 + 〈j′(x)〉.

Then the proof is complete. �

Note that if C is a cyclic code of length n over R, then C is an even-like
code over R if and only if µ(C) is an even-like code over Fq. In particular, C
is an odd-like code over R if and only if µ(C) is an odd-like code over Fq. Also
if C is any [n, n−12 ] cyclic code over Fq, then C is self-orthogonal if and only if
C is an even-like duadic code whose splitting is given by µ−1, see [2, Theorem
6.4.1]. Thus we have the following corollary.

Corollary 3.6. Let C be any [n, n−12 ] cyclic code over Fq. Then C ′ is self-
orthogonal if and only if C ′ is an even-like duadic code whose splitting is given
by µ−1.

Theorem 3.7. Let C ′1, C ′2 and D′1, D′2 be even-like and odd-like duadic codes
over R, respectively. Then the following statements are equivalent.

(1) C ′⊥1 = D′1;
(2) C ′⊥2 = D′2;
(3) µ−1(C ′1) = C ′2;
(4) µ−1(C ′2) = C ′1.

Proof. By [2, Theorem 6.4.2], C⊥1 = D1 if and only if C⊥2 = D2. Hence C⊥1
l

=

D′1 if and only if C⊥2
l

= D′2. By Lemma 2.3, parts (1) and (2) are equivalent.
Since µ−1−1 = µ−1, parts (3) and (4) are equivalent. If C ′⊥1 = D′1, then C ′1 is
self-orthogonal. We conclude part (3) from Corollary 3.6. Conversely, if part
(3) holds, by Proposition 2.4 we have C ′⊥1 = D′1. �

Theorem 3.8. Let C ′1, C ′2 and D′1, D′2 be even-like and odd-like duadic codes
over R, respectively. Then the following statement are equivalent.

(1) C ′⊥1 = D′2;
(2) C ′⊥2 = D′1;
(3) µ−1(C ′1) = C ′1;
(4) µ−1(C ′2) = C ′2.

Proof. By [2, Theorem 6.4.3], C⊥1 = D2 if and only if C⊥2 = D1. Hence it is
easy to see that parts (1) and (2) are equivalent. By Proposition 2.4, parts (1)
and (3) are equivalent. Simiralry, parts (2) and (4) are equivalent. �

3.1. Quadratic residue codes

Quadratic residue codes over finite fields are cyclic codes which can be de-
fined in terms of their idempotent generators. In this section, we assume that
Qp and Np are the sets of non-zero quadratic residue and quadratic non-residue
modulo p, respectively. Also we let q1(x) =

∑
i∈Qp

xi and q2(x) =
∑

i∈Np
xi.

We note that the quadratic residue codes over finite local rings are special cases
of duadic codes.
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Definition 3.9. The quadratic residue codes over R are duadic codes of odd
prime length p.

By Theorem 3.3, we have the following corollary.

Corollary 3.10. Quadratic residue codes of odd prime length p exist over R
if and only if q is a square modulo p.

Theorem 3.11. Let C be a quadratic residue code over R with idempotent
generator E(x). Then µa(E(x)) = E(x) for all a ∈ Qp.

Proof. If C is a quadratic residue code over R, then µ(C) is a quadratic residue
code over Fq with idempotent generator µ(E(x)) = e(x). Hence by [2, Theorem
6.6.3], we have µa(e(x)) = e(x) for all a ∈ Qp. It is sufficient to show that
µa(e(x)) = e(x) if and only if µa(E(x)) = E(x) for every a. If µa(e(x)) = e(x),
then µ(µa(E(x))) = e(x). Thus by Lemma 2.7, we conclude that µa(E(x)) =
E(x). It follows that if µa(e(x)) = e(x), then µa(E(x)) = E(x) for all a. Also
the converse statment is true. Now, the proof is complete. �

By [2, Theorem 6.6.4], for any b ∈ Np, µb is a multiplier such that µb(C1) =
C2 and µb(C2) = C1. Thus we have the following theorem.

Theorem 3.12. Let C ′1 be an even-like quadratic residue code of odd prime
length p over R with idempotent generator E1(x). Therefore four quadratic
residue codes over R have idempotent generators E1(x), µb(E1(x)), E1(x) +
j′(x), and µb(E1(x)) + j′(x) for any b ∈ Np.

Proof. By Definition 3.1 and Corollary 3.4, E1(x), E2(x) = µb(E1(x)), 1 −
E2(x) = E1(x) + j(x) and 1 − E1(x) = E2(x) + j(x) = µb(E1(x)) + j(x)
are idempotent generators of four quadratic residue codes over R, for any b ∈
Np. �

The results of Theorem 3.12 show that µa(C ′1) = C ′2, µa(C ′2) = C ′1, µa(D′1) =
D′2 and µa(D′2) = D′1 for any b ∈ Np.

Theorem 3.13. Let C ′1, C ′2 and D′1, D′2 be even-like and odd-like duadic codes
over R, respectively. Then the following statements hold.

(1) If p ≡ −1 (mod 4), then C ′1 and C ′2 are self-orthogonal and C ′⊥1 = D′1
and C ′⊥2 = D′2;

(2) If p ≡ 1 (mod 4), then C ′⊥1 = D′2 and C ′⊥2 = D′1.

Proof. (1) If p ≡ −1 (mod 4), then −1 ∈ Np. Hence by Theorem 3.12,

µ−1(C ′1) = C ′2 and µ−1(C ′2) = C ′1. Then by Theorem 3.7, we have C ′1
⊥

= D′1
and C ′2

⊥
= D′2.

(2) By Theorem 3.11, if p ≡ 1 (mod 4), we conclude that µ−1(C ′i) = C ′i for

i = 1, 2. It follows C ′1
⊥

= D′2 and C ′2
⊥

= D′1 from Theorem 3.8. �

Theorem 3.14. If p ≡ 1 (mod 4), then D′1 and D′2 are LCD codes over R.

Proof. If p ≡ 1 (mod 4), by Theorem 3.13, we have C ′1
⊥

= D′2 and C ′2
⊥

= D′1.

Hence by Proposition 2.5, D′i∩D′i
⊥

= 〈(1−Ei(x))Ei(x)〉 = {0} for i = 1, 2. �
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3.2. Extending quadratic residue codes

In this section, we are ready to define the extended quadratic residue codes
over a finite local ring. We can also consider extending odd-like quadratic
residue codes in such a way that the extensions are self-dual or dual to each
other.

Definition 3.15. Let D′i be an odd-like quadratic residue code of length p
over a finite local ring R, with i = 1, 2. Then there exist different extended
quadratic residue codes over R as follows:

(1) Di = {(c0, c1, . . . , cp−1, cp) : (c0, c1, . . . , cp−1) ∈ Di with
∑p

i=0 ci = 0};
(2) D̂i = {(c0, c1, . . . , cp−1, 1p

∑p−1
i=0 ci) : (c0, c1, . . . , cp−1) ∈ Di}.

Note that, if R is a finite local ring with characteristic qt and p ≡ −1 (mod

qt), then D̂′i = D′i.

Theorem 3.16. Let R be a finite local ring with characteristic qt. If p ≡ −1
(mod qt) and p ≡ −1 (mod 4), then D′1 and D′2 are self-dual.

Proof. D′1 has the following (p+1)
2 × (p+ 1) generator matrix:

G =


0
0
. G′1
.
.
−1 1

p
1
p

1
p · · · 1

p

 ,

where G′1 is a generator matrix for C ′1. Since

D′i = C ′i + 〈j′(x)〉, where i = 1, 2

and C ′1 is self-orthogonal by Theorem 3.13, the rows of G′1 are orthogonal to
each other and clearly also orthogonal to the last row. On the other hand, the
last row is orthogonal to itself, then D′1 is self-orthogonal. Since |D′1| = |D′1| =
|R|(

p+1
2 ) and |D′1

⊥
| = |R|p+1

|D′1|
= |R|(

p+1
2 ), we conclude that D′1 is self-dual. A

similar argument allows us to prove that D′2 is self-dual. �

Theorem 3.17. If p ≡ 1 (mod 4), then D̂′1 and D′2 are duals of each other.

Proof. We can prove this theorem in a similar way to the one which was used
in Theorem 3.16. �

Corollary 3.18. Let R be a finite local ring with characteristic qt. If p ≡ 1
(mod 4) and p ≡ −1 (mod qt), then D′i is formally self-dual, where i = 1, 2.
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3.3. Idempotent generator of a quadratic residue codes over finite
local ring

As we know the unique idempotent generator of quadratic residue codes over
finite field have been identified. But finding the unique idempotent generator
of these codes over finite local rings is not always easy, see [1] and [8]. Then we
present a practical method for the computing the unique idempotent generator
of quadratic residue codes over finite local rings.

Remark 3.19. LetR be a finite local ring with maximal idealM . Then ker(µ̄) =
{k(x) + 〈xn − 1〉 : k(x) ∈ M [x]}. By [4, Theorem XIII.2], M [x] = ∩{P :
P is a prime ideal in R[x]}, then√

0Rn
= ∩

{
P

〈xn − 1〉
: P is a prime ideal in R[x]

}
=

M [x]

〈xn − 1〉
.

So by [7, Lemma 8.21], there exists k ∈ N such that (
√

0Rn
)k = 0.

Now we can define the nilpotency index of ker(µ̄).

Definition 3.20. Define the nilpotency index of ker(µ̄) to be the smallest
natural number k such that Lk(x) = 0 for every L(x) ∈ ker(µ̄).

Thus we are ready to obtain the idempotent generator of a quadratic residue
code over finite local ring.

Proposition 3.21. Let R be a finite local ring of characteristic qt with residue
field Fq and let k be the nilpotency index of ker(µ̄). If e(x) and E(x) are the
idempotent generators of quadratic residue codes over Fq and R, respectively,
and F (x) is the polynomial in R[x] such that µ̄(F (x)) = e(x), now we have the
following statements.

(1) If k ≤ qt and j are the smallest integer number such that qt |
(
qt+j

i

)
for

every 1 ≤ i ≤ k − 1, then E(x) = (F (x))q
t+j

;

(2) If qt < k and j are the smallest integer number such that qt |
(
k+j
i

)
for

every 1 ≤ i ≤ k − 1, then E(x) = (F (x))k+j.

Furthermore, if R and Fq have the same characteristic, then e(x) is the idem-
potent generator of quadratic residue codes over R.

Proof. (1) Since µ̄(F (x)) = e(x) = µ̄(E(x)), then there exists L(x) ∈ ker(µ̄)
such that F (x) = E(x) + L(x). Moreover, if k ≤ qt and j are the smallest

integer number such that qt |
(
qt+j

i

)
for every 1 ≤ i ≤ k − 1, then (F (x))q

t+j

=

(E(x) +L(x))q
t+j

= E(x). It follows that (F (x))q
t+j

is the unique idempotent
generator of C.

(2) We use similar way to that used in the proof of part (1) above.
To prove the claim in the last sentence of the lemma, it is sufficient that we

suppose that F (x) = e(x). �
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For simplicity, if R = Zqt , we can suppose that F (x) = e(x) in the above
theorem. It should be noted that after obtaining of the idempotent generator
of D′1, we can find other three idempotent generators of quadratic residue codes
over R by Theorem 3.12. In the next example we obtain idempotent generators
of quadratic residue codes of length 5 over GR(9, 2) by Proposition 3.21.

Example 3.22. Let R = GR(9, 2) = {a+ bw : a, b ∈ Z9 and w2 = 7w + 7} of
characteristic 9 with residue field F9 = {ρi : ρ = 1, . . . , 8 and ρ2 = ρ+ 1}∪{0}.
Then k = 2 and j = 0. Since the unique idempotent generator of C1 of length
5 is ρ3x4 + ρx3 + ρx2 + ρ3x+ 1 and µ̄(w) = ρ, now we can let

F (x) = w3x4 + wx3 + wx2 + w3x+ 1 ∈ R.
Thus

(F (x))9 = (2w + 1)x4 + (7w + 6)x3 + (7w + 6)x2 + (2w + 1)x+ 4

= (2w + 1)q1(x) + (7w + 6)q2(x) + 4

is the unique idempotent generator of C ′1. Similarly, we obtain the unique
idempotent generators of C ′2, D′1 and D′2 as follows:

C ′2 = 〈(7w + 6)q1(x) + (2w + 1)q2(x) + 4〉;
D′1 = 〈(2w + 3)q1(x) + (7w + 8)q2(x) + 6〉;
D′2 = 〈(7w + 8)q1(x) + (2w + 3)q2(x) + 6〉.

In the following example we find the unique idempotent generator of odd-like
quadratic residue code of length 11 over F3 + uF3, where u2 = 0.

Example 3.23. Let R = F3 +uF3, where u2 = 0. Then R is a finite chain ring
with residue field F3. The unique idempotent generator of odd-like quadratic
residue code of length 11 over F3 is −(x + x3 + x4 + x5 + x9). Then by
Corollary 2.2, the unique idempotent generator of odd-like quadratic residue
code of length 11 over R is −q1(x). Similarly, C ′1 = 〈1+q2(x)〉, C ′2 = 〈1+q1(x)〉
and D′2 = 〈−q2(x)〉.

4. Examples of quadratic residue codes over finite chain rings

In this section, we investigate the examples of quadratic residue codes over
finite chain rings.

Example 4.1. Let R = GR(4, 3) be a finite chain ring of characteristic 4
with residue field F8 = {ρi : ρ = 1, . . . , 7 and ρ3 = ρ + 1} ∪ {0}. Then R =
{a + bw + cw2 : a, b, c ∈ Z4 and w3 = 3w + 3}. Then the quadratic residue
code D′1 of length 7 over R is generated by the monic generator polynomial

(x+ 3w+ 2)(x+ 3w2)(x+w2 +w). Thus D′1 is the (7, |R|4, 3) code and D′1 is
the (8, |R|4, 4) self-dual code over R.

Example 4.2. Let R = GR(9, 2) and p = 5. Then D′1 corresponds to a
(5, |R|3, 3) MDS and LCD code over R. Also its extended corresponds to a
(6, |R|3, 4) MDS over R.
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Table 1. Quadratic residue codes over GR(4, s), where s = 2, 3, 4

Ring (n,K, d)R
R = GR(4, 2) D′1 = (3, |R|2, 2)∗

R = GR(4, 2) D′1 = (4, |R|2, 3)∗ self-dual
R = GR(4, 2) D′1 = (5, |R|3, 3)∗ LCD code

R = GR(4, 2) D′1 = (6, |R|3, 4)∗

R = GR(4, 2) D′1 = (7, |R|4, 3)

R = GR(4, 2) D′1 = (8, |R|4, 4) self-dual
R = GR(4, 2) D′1 = (11, |R|6, 5)

R = GR(4, 2) D′1 = (12, |R|6, 6) self-dual
R = GR(4, 3) D′1 = (7, |R|4, 3)

R = GR(4, 3) D′1 = (8, |R|4, 4) self-dual
R = GR(4, 4) D′1 = (5, |R|3, 3)∗ LCD code

R = GR(4, 4) D′1 = (6, |R|3, 4)∗

Table 2. Quadratic residue codes over GR(2s, 2), where s = 3, 4, 5

Ring (n,K, d)R
R = GR(8, 2) D′1 = (3, |R|2, 2)∗

R = GR(8, 2) D′1 = (4, |R|2, 3)∗

R = GR(8, 2) D′1 = (5, |R|3, 3)∗ LCD code

R = GR(8, 2) D′1 = (6, |R|3, 4)∗

R = GR(8, 2) D′1 = (7, |R|4, 3)

R = GR(8, 2) D′1 = (8, |R|4, 4) self-dual
R = GR(16, 2) D′1 = (3, |R|2, 2)∗

R = GR(16, 2) D′1 = (4, |R|2, 3)∗

R = GR(16, 2) D′1 = (5, |R|3, 3)∗ LCD code

R = GR(16, 2) D′1 = (6, |R|3, 4)∗

R = GR(32, 2) D′1 = (3, |R|2, 2)∗

R = GR(32, 2) D′1 = (4, |R|2, 3)∗

R = GR(32, 2) D′1 = (5, |R|3, 3)∗ LCD code

R = GR(32, 2) D′1 = (6, |R|3, 4)∗

We finish this section by combining the results in Tables 1, 2 and 3.
In Tables 1, 2 and 3, ∗ denotes that the code is MDS.
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Table 3. Quadratic residue codes over GR(qk, 2), where (q =
3 and k = 2, 3), (q = 5, 7 and k = 2)

Ring (n,K, d)R
R = GR(9, 2) D′1 = (5, |R|3, 3)∗ LCD code

R = GR(9, 2) D′1 = (6, |R|3, 4)∗

R = GR(9, 2) D′1 = (7, |R|4, 4)∗

R = GR(9, 2) D′1 = (8, |R|4, 5)∗

R = GR(27, 2) D′1 = (5, |R|3, 3)∗ LCD code

R = GR(27, 2) D′1 = (6, |R|3, 4)∗

R = GR(25, 2) D′1 = (3, |R|2, 2)∗

R = GR(25, 2) D′1 = (4, |R|2, 3)∗

R = GR(49, 2) D′1 = (3, |R|2, 2)∗

R = GR(49, 2) D′1 = (4, |R|2, 3)∗
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[5] G. H. Norton and A. Sălăgean, On the structure of linear and cyclic codes over a finite

chain ring, Appl. Algebra Engrg. Comm. Comput. 10 (2000), no. 6, 489–506. https:

//doi.org/10.1007/PL00012382

[6] V. S. Pless and Z. Qian, Cyclic codes and quadratic residue codes over Z4, IEEE Trans.

Inform. Theory 42 (1996), no. 5, 1594–1600. https://doi.org/10.1109/18.532906
[7] R. Y. Sharp, Steps in Commutative Algebra, second edition, London Mathematical Soci-

ety Student Texts, 51, Cambridge University Press, Cambridge, 2000.

[8] B. Taeri, Quadratic residue codes over Z9, J. Korean Math. Soc. 46 (2009), no. 1, 13–30.
https://doi.org/10.4134/JKMS.2009.46.1.013

Arezoo Soufi Karbaski

Department of Mathematics
Bu Ali Sina University

Hamedan, Iran

Email address: arezoo.sufi@basu.ac.ir

Karim Samei

Department of Mathematics

Bu Ali Sina University
Hamedan, Iran

Email address: samei@ipm.ir

https://doi.org/10.1017/CBO9780511807077
https://doi.org/10.1109/TIT.1984.1056944
https://doi.org/10.1007/PL00012382
https://doi.org/10.1007/PL00012382
https://doi.org/10.1109/18.532906
https://doi.org/10.4134/JKMS.2009.46.1.013

