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VARIATIONS IN WRITHES OF VIRTUAL KNOTS UNDER

A LOCAL MOVE

Amrendra Gill and Prabhakar Madeti

Abstract. n-writhes denoted by Jn(K) are virtual knot invariants for
n 6= 0 and are closely associated with coefficients of some polynomial

invariants of virtual knots. In this work, we investigate the variations

of Jn(K) under arc shift move and conclude that n-writhes Jn(K) vary
randomly in the sense that it may change by any random integer value

under one arc shift move. Also, for each n 6= 0 we provide an infinite

family of virtual knots which can be distinguished by n-writhes Jn(K),
whereas odd writhe J(K) fails to do so.

1. Introduction

Virtual knot theory initiated by Kauffman [7] extends the study of knots em-
bedded in 3-dimensional sphere S3 to the knots embedded in thickened surfaces
Sg × [0, 1], where Sg denotes a surface of genus g > 0. A diagram of a virtual
knot is a 4-planar graph whose vertices are replaced by two types of crossings,
classical and virtual as shown in Figure 1. A virtual crossing is indicated by
placing a small circle around the vertex and do not have over/under informa-
tion like classical crossing. Equivalence between two virtual knot diagrams is
defined using generalized Reidemeister moves as listed in Figure 2 which are
an extension of classical Reidemeister moves. For convenience the set of gen-
eralized Reidemeister moves is denoted by GR-moves throughout this paper.
A local move which along with GR-moves can be used repeatedly to convert
any virtual knot diagram D into trivial knot diagram is called an unknotting
operation. Finding new local moves that act as unknotting operations is an
important task in virtual knot theory. Local moves like virtualization of a clas-
sical crossing, CF -move [12] shown in Figure 3, and forbidden moves [6,10] as
shown in the Figure 4 are few known unknotting operations for virtual knots.

An object associated with virtual knot diagrams which remains unchanged
under GR-moves is called a virtual knot invariant. Finding new invariants
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is one of the major goals in virtual knot theory. Numerical invariants like
unknotting number, odd writhe, forbidden number or polynomial invariants
like index polynomial [5], affine index polynomial [9], writhe polynomial [2],
and algebraic invariants like virtual knot group and virtual knot quandle are
few already known virtual knot invariants. Another numerical invariant called
n-writhe which we will further investigate in the paper can be defined using
Gauss diagram.

Definition 1.1. A Gauss diagram G(D) corresponding to a virtual knot di-
agram D is an oriented circle with a base point where each classical crossing
is marked two times with respect to overpass and underpass. Two markings
corresponding to a crossing c are then joined by a signed arrow (chord) directed
from overpass to underpass (see Figure 6). The sign of the crossing, denoted by
sgn(c), attached to each arrow is equal to the local writhe of the corresponding
crossing c defined as per the convention shown in Figure 5.

Figure 1. Classical and virtual crossings.

Figure 2. Generalized Reidemeister moves.

(a) Virtualization (b) CF -move

Figure 3. Virtualization and CF -move.
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Figure 4. Forbidden moves.

I �

sgn(c) = +1

I �

sgn(c) = −1

Figure 5. Crossing signs.

Figure 6. Gauss diagram corresponding to virtual knot diagram D.

In [2], Cheng and Gao assigned an integer value, called an index value, to
each classical crossing c of a virtual knot diagram and denoted it by Ind(c).
Ind(c) can be defined using Gauss diagram. For the arrow corresponding to
crossing c, fix an arc on the circle in Gauss diagram starting at tail and end-
ing at head of arrow c along anticlockwise orientation. Denote by H and T ,
respectively, the set of arrows whose head and tail lies on the fixed arc.

Definition 1.2. Ind(c) is defined as sum of signs of arrows lying in T minus
the sum of signs of arrows lying in H.

For example, in Figure 7, the arc PQ along anticlockwise orientation on

the circle from P to Q is the fixed arc corresponding to arrow
−−→
PQ. We have

H = {c1, c2, c4} and T = {c2, c3, c5} therefore Ind(c) = sgn(c2) + sgn(c3) +
sgn(c5)− (sgn(c1) + sgn(c2) + sgn(c4)), i.e., Ind(c) = −2.

In [8], Kauffman defined parity among crossings as odd/even and further
used it to define a virtual knot invariant called odd writhe. Denoted by J(D),
the odd writhe of a virtual knot diagram D is defined as the sum of signs of all
the odd crossings in D. Remark here that a crossing c is odd if and only if Ind(c)
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Figure 7. Computing Ind(c).

is an odd integer as was shown in [2]. Therefore, odd writhe J(D) can also be
reinterpreted as the sum of signs of all the crossings having index value an odd
integer. In [14], Satoh and Taniguchi introduced the n-th writhe. For each n ∈
Z \ {0} the n-th writhe Jn(D) of an oriented virtual knot diagram D is defined
as Jn(D) =

∑
Ind(c)=n sgn(c). It was shown that Jn(D) for n 6= 0 is a virtual

knot invariant and the odd writhe J(D) is equal to the sum of all Jn(D) for odd
integers n. Jn(D) are stronger virtual knot invariants than odd writhe J(D) in
the sense that any two virtual knots which can not be distinguished by Jn(D)
for all n 6= 0 are also non-distinguishable by J(D). Further Jn(D) distinguishes
few virtual knots which are not distinguishable by J(D). Such an infinite
family of virtual knots are constructed in Corollary 2.6. Further importance of
Jn(D) lies in the fact that coefficients of few polynomial invariants like index
polynomial [5], odd writhe polynomial [1] and affine index polynomial [9] can be
expressed in terms of Jn(D) as shown in [13,14]. A study of variations in Jn(D)
under a local move can give insight about the change in polynomial invariants
under corresponding local move. The variations of Jn(D) have been extensively
studied under various local moves like ∆-move [14], forbidden moves [13] and
virtualization of classical crossing [11]. A local move called arc shift move was
defined by authors in an earlier work and the variation in odd writhe J(K)
under arc shift move was also studied. However, behavior of Jn(K) under
arc shift move is still not known. In this work we investigate the variations
of Jn(K) under arc shift move. In Section 2 we briefly review definition and
results known for arc shift move and discuss main results of this paper. At the
end in Section 3, we study the variation of affine index polynomial under arc
shift move.

2. Arc shift move and variations of writhes

A local move called an arc shift move was defined for virtual knot diagrams
in [3] and related Gordian complex of virtual knots was studied in [4]. An arc,
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say (a, b) is meant that rather going directly first to a and then b along arc (a, b),
we travel first to b and then come back to a thus reversing the orientation on
arc (a, b). This procedure is shown in Figure 8 for the case when both crossings
of arc (a, b) are classical crossings. Some new crossings which may arise during
executing an arc shift move are marked as virtual crossings.

Figure 8. Arc shift move on arc (a, b).

It is possible to convert any virtual knot diagram D into trivial knot diagram
using arc shift moves and GR-moves thus making it an unknotting operation
for virtual knots.

Theorem 2.1 ([3]). Every virtual knot diagram D can be transformed into
trivial knot diagram using arc shift moves and generalized Reidemeister moves.

Minimum number of arc shift moves required to convert a diagram of virtual
knot K into trivial knot is defined as arc shift number of K denoted by A(K).
Further, behavior of odd writhe J(K) was studied under arc shift moves.

Proposition 2.2 ([3]). If D and D′ are two virtual knot diagrams that differ
by an arc shift move, then either J(D′) = J(D) or J(D′) = J(D)± 2.

Variation of n-writhe Jn(K) is still not known under arc shift move. In
this paper, we investigate the variations in Jn(K) under arc shift moves and
prove in Theorem 2.3, the main result that n-writhe can change by any random
integer.

Theorem 2.3. For any pair of integers (n1, n2) ∈ Z\{0}×Z\{0}, there exists
a virtual knot V K such A(V K) = 1 and Jn1

(V K) = n2.

Proof. The proof is based on construction. We construct virtual knots V Kn2
n1

for different cases of (n1, n2) where (n1, n2) ∈ Z \ {0} × Z \ {0}.
Case 1: (1, n2), n2 > 0.

Construct the virtual knot V Kn2
1 as shown in Figure 9(a). We claim that this

virtual knot V Kn2
1 satisfies A(V Kn2

1 ) = 1 and J1(V Kn2
1 ) = n2.

Denoted by G(V Kn2
1 ), the Gauss diagram of the virtual knot V Kn2

1 , is shown
in Figure 9(b). Using Gauss diagram we compute Ind(c) for all the classical
crossings in V Kn2

1 . We slightly abuse the notation here and use the symbol
c to denote both the crossing c as well as the corresponding arrow in Gauss
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(a) V Kn2
1 .

(b) G(V Kn2
1 ).

Figure 9. Virtual knot V Kn2
1 and Gauss diagram G(V Kn2

1 ).

diagram. For the crossing c1, we have Ind(c1) = sgn(d1)+sgn(d2)+sgn(c11) = 1.
Similarly by computing Ind(c) for all other crossings, we have

(1)

Ind(ci) = 1 for i = 1, 2, . . . , n2,

Ind(c1i ) = −1 for i = 1, 2, . . . , n2,

Ind(d1) = −n2 + 1,

Ind(d2) = −n2,

Ind(d3) = −1.

As n2 > 0, the only crossings with index value 1 are c1, c2, . . . , cn2
. Hence,

J1(V Kn2
1 ) =

∑
Ind(c)=1 sgn(c) = sgn(c1) + · · · + sgn(cn2

) = n2. We now show

that the virtual knot V Kn2
1 has arc shift number one by converting the diagram

of V Kn2
1 into trivial knot using one arc shift move and GR-moves. In the

diagram of V Kn2
1 , apply one arc shift move at the arc (a, b) lying in the shaded

region as shown in Figure 10. Resulting diagram of virtual knot L can be
reduced into trivial knot by using GR-moves multiple times as can be seen in
Figure 10.
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Case 2: (2, n2), n2 > 0.

Let V Kn2
2 be the virtual knot shown in Figure 11(a). We claim that virtual

knot V Kn2
2 satisfies the conditions A(V Kn2

2 ) = 1 and J2(V Kn2
2 ) = n2.

Figure 10. Converting V Kn2
1 into trivial knot.

As in Case 1, we compute index values of all classical crossings using Gauss
diagram G(V Kn2

2 ) shown in Figure 11(b). For c1 we have, Ind(c1) = sgn(d1) +



310 A. GILL AND P. MADETI

(a) V Kn2
2 .

(b) G(V Kn2
2 ).

Figure 11. Virtual knot V Kn2
2 and Gauss diagram G(V Kn2

2 ).

sgn(d2) = 2. Similarly, by computations for rest of the crossings, we get

(2)

Ind(ci) = 2 for i = 1, 2, . . . , n2,

Ind(d1) = −n2 + 1,

Ind(d2) = −n2,

Ind(d3) = −1.

Since n2 > 0, the only crossings with index values 2 are c1, c2, . . . , cn2 , hence,
J2(V Kn2

1 ) =
∑

Ind(c)=2 sgn(c) = sgn(c1) + · · ·+ sgn(cn2
) = n2.

As in Case 1, we show that virtual knot V Kn2
2 can be transformed into

trivial knot using one arc shift move. It is easy to observe that a part of virtual
knot V Kn2

2 lying on right to the dashed line in Figure 12 is identical to that
of the virtual knot V Kn2

1 from Figure 9(a). Therefore, V Kn2
2 can be reduced

into the virtual knot diagram L shown in Figure 13 by applying one arc shift
move. It is easy to see that L is equivalent to trivial knot via RI, V RI moves
and hence A(V Kn2

2 ) = 1 follows.

Case 3: (n1, n2), n1 ≥ 3 and n2 > 0.
This generalized virtual knot diagram denoted by V Kn2

n1
is constructed as

shown in Figure 14(a). We claim that this virtual knot V Kn2
n1

satisfies A(V Kn2
n1

)
= 1 and Jn1

(V Kn2
n1

) = n2.
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Figure 12. V Kn2
2 .

Figure 13. L.

(a) V Kn2
n1 .

(b) G(V Kn2
n1 ).

Figure 14. Virtual knot V Kn2
n1

and Gauss diagram G(V Kn2
n1

).

As in the earlier cases, we compute Ind(c) using Gauss diagram G(V Kn2
n1

)
shown in Figure 14(b).
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For crossing c1, we have

Ind(c1) = sgn(d1) + sgn(d2)−
∑

i=1,...,n1−2
sgn(ci1) = 2 + (n1 − 2) = n1.

Similarly, we have

(3)

Ind(ci) = n1 for i = 1, 2, . . . , n2,

Ind(c1i ) = n1 − 2 for i = 1, 2, . . . , n2,

Ind(cji ) = 0 for i = 1, 2, . . . , n2 and j = 2, . . . , n1 − 2,

Ind(d1) = −n2 + 1,

Ind(d2) = −n2,

Ind(d3) = −1.

As n2 > 0, the only crossings of index n1 are c1, . . . , cn2
, hence,

Jn1(V Kn2
n1

) =
∑

Ind(c)=n1

sgn(c) = sgn(c1) + · · ·+ sgn(cn2) = n2.

Analogous to earlier two cases, apply one arc shift move on the arc (a, b)
lying on right hand side of dashed line in V Kn2

n1
(see Figure 15).

It follows that V Kn2
n1

gets deformed into virtual knot diagram L1. We can
further reduce L1 into virtual knot L2 by applying one V RII and one RII move
at crossings c1, c

1
1. Further, by repeated applications of V RIII, SV moves at

the crossings c21, . . . , c
n1−2
1 , we can convert L2 into virtual knot L3. Notice that

applying V RI,RI moves at crossings c21, . . . , c
n1−2
1 in L3 results in virtual knot

L4 which is identical to L1 except no crossings in the block that contained
crossing c1 earlier. This whole procedure is shown in Figure 15. Thus, by
repeating the same procedure n2 − 3 times in the diagram L4 we can convert
it into trivial knot. Therefore, A(V Kn2

n1
) = 1.

We prove Theorem 2.3 for remaining cases by using the behavior of n-writhe
under taking the mirror image and reversing orientation of a virtual knot dia-
gram D. Let DR be the reverse of D, obtained from D by reversing the orienta-
tion and let D∗ be the mirror image of D, obtained by switching all the classical
crossings in D. Then, we have J±n(D∗) = −J∓n(D) and J±n(DR) = J∓n(D).
Case 4: (n1, n2), n1 < 0, n2 > 0.

Let V Kn2

|n1| be the virtual knot corresponding to the case |n1|, n2 > 0 as dis-

cussed in previous cases. Assume that L denotes the virtual knot V Kn2

|n1|
R then

we have,

(4)

Jn1
(L) = Jn1

(V Kn2

|n1|
R)

= J−n1(V Kn2

|n1|)

= J|n1|(V Kn2

|n1|) as |n1| = −n1 for n1 < 0

= n2.
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Figure 15. V Kn2
n1

converted into trivial knot.

Case 5: (n1, n2), n1 > 0, n2 < 0.

Let L be the virtual knot (V K
|n2|R
n1 )∗. Then we get,

(5)

Jn1
(L) = Jn1

((V K |n2|R
n1

)∗)

= −J−n1
(V K |n2|R

n1
)

= −Jn1(V K |n2|
n1

)

= −|n2|
= n2 as n2 < 0.
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Case 6: (n1, n2), n1 < 0, n2 < 0.

Denote by L the virtual knot V K
|n2|∗
|n1| so that

(6)

Jn1
(L) = Jn1

(V K
|n2|∗
|n1| )

= −J−n1(V K
|n2|
|n1| )

= −J|n1|(V K
|n2|
|n1| ), as n1 < 0

= −|n2|
= n2 as n2 < 0.

For each of the virtual knot L considered in Cases 4, 5 and 6, arc shift number
A(L) = 1, which follows similarly as in Cases 1, 2 and 3. This completes the
proof of Theorem 2.3. �

Whereas it follows from Theorem 2.3 that n-writhe can increase and decrease
by any non zero integer under arc shift move, there is also a possibility that it
remains unaltered as shown in next theorem. In fact, there exist infinite family
of such virtual knots as we prove in Theorem 2.4.

Theorem 2.4. There exists an infinite family of virtual knots {Km}m≥1 such
that A(Km) = 1 and Jn(Km) = 0 for any n ∈ Z \ {0}.

Proof. The proof is based on construction, we construct virtual knots {Km}m≥1,
such that, A(Km) = 1 and Jn(Km) = 0.
Case 1: n = 1.
Let Km for m ≥ 1 be the virtual knot shown in Figure 16.

Figure 16. Virtual knot Km.

For crossings in Km, we have

Ind(ci) = 2 for i = 1, 2, . . . ,m.

Ind(d1) = −m + 1, Ind(d2) = −m and Ind(d3) = −1.

Note that, 2 is the only positive index value among all crossings of Km.
It follows that, there is no crossing in Km having index value 1 and hence
J1(Km) = 0 for m ≥ 1. Observe that Km is identical to the virtual knot V Kn2

2

from Figure 11(a) for n2 = m, thus, A(Km) = 1.

Case 2: n ≥ 2.
Consider the virtual knot Km for m ≥ 1 as shown in Figure 17.
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Figure 17. Virtual knot Km.

For crossings in Km, we have

Ind(ci) = 1, Ind(c1i ) = −1 for i = 1, 2, . . . ,m.

Ind(d1) = −m + 1, Ind(d2) = −m and Ind(d3) = −1.

Therefore, for n ≥ 2, there is no crossing in Km with index value equal to n and
hence Jn(Km) = 0 for m ≥ 1. Note that Km is identical to the virtual knot
V Kn2

1 from Figure 9(a) for n2 = m, thus, A(Km) = 1. Other cases follows by
reversing the orientation on virtual knots considered in Cases 1 and 2. �

We have a corollary that immediately follows from Theorem 2.3.

Corollary 2.5. If S = {V K |A(V K) = 1}, then Sn = {Jn(V K) |V K ∈ S} is
unbounded for each n ∈ Z \ {0}.

Proof. For n 6= 0 and any arbitrary m ∈ Z \ {0} we constructed V Km
n from

Theorem 2.3 for which A(V Km
n ) = 1 and Jn(V Km

n ) = m. Since m is arbitrary,
{Jn(V Km

n ) |m ∈ Z \ {0}} is unbounded for each n 6= 0. As {Jn(V Km
n ) |m ∈

Z \ {0}} ⊆ Sn = {Jn(V K) |V K ∈ S}, Sn is unbounded for each n 6= 0. �

As another corollary of Theorem 2.3, we show that for each n 6= 0, there
exists an infinite family of virtual knots that can be distinguished using n-
writhe Jn whereas odd writhe J(K) fails to do so.

Corollary 2.6. For every n ∈ Z\{0}, there exists an infinite family of virtual
knots {Ki

n}i≥1 having identical odd writhe J but distinct n-writhe Jn.

Proof. For a fixed non zero integer n, let Kj
n denote the virtual knot V Kj

n from
Theorem 2.3 for j = 1, 2, . . .. From the conditions satisfied in Theorem 2.3,
we have Jn(Kj

n) = j for j ≥ 1 and thus Jn distinguishes them. Since arc
shift number A(Kj

n) = 1, from Proposition 2.2 it follows that J(Kj
n) = 0, 2 or

−2 for j ≥ 1. By pigeonhole principle there must exist an infinite subfamily
Kj1

n ,Kj2
n , . . ., having odd writhe as one of 0, 2 or −2. �

3. Affine index polynomial for the virtual knots V Kn2
n1

In this section we compute affine index polynomial for virtual knots V Kn2
n1

and observe that coefficients and degree of affine index polynomial shows un-
bounded behavior under arc shift move. For convenience of reader we briefly
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review the definition of affine index polynomial. Let D be an oriented virtual
knot diagram and C(D) denote the set of all classical crossings in D. By an
arc we mean an edge between two consecutive classical crossings along the ori-
entation. Note that the notion of arc here is slightly different from the way
arc was defined while discussing arc shift move. Now assign an integer value
to each arc in D in such a way that the labeling around each crossing point of
D follows the rule as shown in Figure 18.

I �

b + 1

a b

a− 1

I �

b + 1

a b

a− 1

I �f
b

a b

a

Figure 18. Labeling of arcs.

After labeling assign a weight WD(c) to each classical crossing c defined in
[9] as

WD(c) = sgn(c)(a− b− 1).

Then the Kauffman’s affine index polynomial [9] of virtual knot diagram D is
defined as

(7) PD(t) =
∑

c∈C(D)

sgn(c)(tWD(c) − 1),

where the summation runs over the set C(D) of classical crossings of D. It was
proved [2, Theorem 3.6] that

(8) Ind(c) = WD(c) = sgn(c)(a− b− 1).

Therefore it follows that coefficients of tn in PD(t) are given by n-writhe Jn(D)
and hence affine index polynomial for D can be rewritten as

PD(t) =
∑
n∈Z

Jn(D) (tn − 1) .

Using the definition of n-writhe, i.e., Jn(D) =
∑

Ind(c)=n sgn(c), we compute all

possible n-writhes for the virtual knots V Kn2
n1

when n1 ≥ 3 as listed in Table 1.

Table 1. Calculations of n-writhe Jn for V Kn2
n1

, n1 ≥ 3.

n Jn(V Kn2
n1

)
−n2 +1
−n2 + 1 +1
−1 +1
0 −n2(n1 − 3)

n1 − 2 −n2

n1 n2
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Remark 3.1. For V Kn2
n1

, by plugging n-writhes into the formula, we get

PV K
n2
n1

(t) = t−n2 + t−n2+1 + t−1 − 3− n2t
n1−2 + n2t

n1 .

Since A(V Kn2
n1

) = 1, V Kn2
n1

can be converted into trivial knot K0 using one arc
shift move. For trivial knot we have affine index polynomial PK0

(t) = 0. In
PV K

n2
n1

(t), as n1 ≥ 3 and n2 > 0 are arbitrary integers, it follows that both the

coefficients and degree of affine index polynomial vary unboundedly under arc
shift move.
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