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GOLDIE EXTENDING PROPERTY ON THE CLASS OF

z-CLOSED SUBMODULES

Adnan Tercan, Ramazan Yaşar, and Canan Celep Yücel

Abstract. In this article, we define a module M to be G z-extending

if and only if for each z-closed submodule X of M there exists a di-
rect summand D of M such that X ∩ D is essential in both X and D.

We investigate structural properties of G z-extending modules and lo-
cate the implications between the other extending properties. We deal

with decomposition theory as well as ring and module extensions for G z-

extending modules. We obtain that if a ring is right G z-extending, then
so is its essential overring. Also it is shown that the G z-extending prop-

erty is inherited by its rational hull. Furthermore it is provided some

applications including matrix rings over a right G z-extending ring.

1. Introduction

Throughout this paper, all rings are associative with unity, R denotes such
a ring, and all modules are unital right R-modules. In the spirit of [1], for
a module M , think of the following relations on the set of submodules of M :
(i) XαY if and only if there exists A ≤ M such that X ≤e A and Y ≤e A;
(ii) XβY if and only if X ∩ Y ≤e X and X ∩ Y ≤e Y . Recall that β is
an equivalence relation and is equivalent to a relation defined in Goldie [9]
for right ideals of a ring. It is easy to see that a module M is extending (or
CS, or C1) if and only if for each X ≤ M , there exists a direct summand
D of M such that XαD (see [1, 7, 23]). Further a module M is called G-
extending (i.e., Goldie extending) if for each X ≤ M , there exists a direct
summand D of M such that XβD or equivalently, for each complement C ≤M ,
there exists a direct summand D of M such that CβD (see [1]). Clearly,
every extending module is G-extending. Latter two concepts appear to be too
similar to expect much difference in their application to the structure theory of
rings and modules. However, there are many surprising differences as indicated
in [1, 2]. Another useful generalization of CS-modules is CLS-modules [22].
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Following [22], a module M is called CLS if every z-closed submodule of M
is a direct summand of M . Incidentally, a submodule N of M is called z-
closed provided that M/N is nonsingular, i.e., Z(M/N) = 0. It can be seen
easily that z-closed submodules are complement. Moreover, notice that z-closed
submodules are the same as the ϕ-closed submodules in [10]. Furthermore
complement submodules and z-closed submodules are coincide in a nonsingular
module [22, Lemma 3] (see, also [6]).

In this paper, we study a module condition including the β relation on the
set of all z-closed submodules of a module. We call a module M , G z-extending
if for every z-closed submodule N of M there exists a direct summand D of M
such that NβD. A ring R is called right G z-extending if RR is a G z-extending
module, i.e., for every z-closed right ideal I of R there exists an idempotent
element e of R such that Iβ(eR). It is clear that the class of G z-extending
modules properly contains the class of G-extending modules. The notion of a
G z-extending module generalizes that of G-extending and also extending and
CLS-modules by asking that only every z-closed submodule is β-related to a
direct summand rather than every complement submodule.

In Section 2, we consider connections between the G z-extending property,
the C1 condition, CLS and G-extending conditions. Moreover, we obtain basic
properties as well as structural behavior of the class of G z-extending modules.
Section 3 is devoted to the decomposition theory of the G z-extending modules.
Since a direct sum of G z-extending modules need not to be G z-extending, we
deal with when a direct sum of G z-extending modules is also a G z-extending.
Furthermore, we investigate conditions which provide the inheritance of G z-
extending property by direct summands. In particular, we prove that if K is
a projection invariant z-closed submodule of M , then M = M1 ⊕K for some
M1 ≤ M and both M1, K are G z-extending. In the last section, we focus
on essential extensions of a G z-extending module and also a G z-extending

ring. We show that if M is G z-extending, then Ẽ(M) is G z-extending where

Ẽ(M) is the rational hull of M . Moreover, we prove that the right essential
overring of a right G z-extending ring enjoys with the G z-extending property.
Furthermore, we provide some applications including matrix rings over a right
G z-extending ring. Our results yield that being G z-extending is not Morita
invariant property.

Let R be a ring and M a right R-module. If X ⊆ M , then X ≤ M ,

X ≤e M , Z(M), Z2(M), E(M), Ẽ(M), Soc(M) and End(MR) denote X is a
submodule of M , X is an essential submodule of M , the singular submodule
of M , the second singular (Goldie torsion) submodule of M , the injective hull
of M , the rational hull of M , the socle of M , and the ring of endomorphisms
of M , respectively. For R, Tm(R) and Mm(R) symbolize the ring of m-by-m
upper triangular matrices over R and the ring of m-by-m full matrices over R,
respectively.
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Following [18], M is called a UC-module if every submodule of M has a
unique closure in M . Recall that a submodule N of M is projection invariant
if for every e2 = e ∈ End(MR), e(N) ⊆ N (see [8]). A module M is said to
satisfy the C z

11 -condition if every z-closed submodule of M has a complement
which is a direct summand [11]. A ring is called Abelian if every idempotent
is central. Other terminology and notation can be found in [4], [7], [10], [13],
[23].

2. Preliminaries

Recall that the following relations on the set of submodules of M (see [1,2]).

(i) XαY if and only if there exists K ≤M such that X ≤e K and Y ≤e K,
(ii) XβY if and only if X ∩ Y ≤e X and X ∩ Y ≤e Y .

Observe that α is reflexive and symmetric, but it may not be transitive. How-
ever, β is an equivalence relation and is defined in Goldie (see [9]) for right
ideals of a ring. Note that if X,Y ≤M such that XαY , then XβY .

Proposition 2.1. M is CLS if and only if for each z-closed submodule X of
M , there exists a direct summand D of M such that XαD.

Proof. The proof is routine. �

Motivated by Proposition 2.1, and Goldie’s, Smith’s and Akalan, Birken-
meier, Tercan’s use of the β equivalence relation in Goldie [9], Smith [18], and
Akalan, Birkenmeier, Tercan [1, 2], respectively, we make the following defini-
tion.

Definition. We say M is G z-extending if for each z-closed submodule X of
M , there exists a direct summand D of M such that XβD.

Note that M is G-extending (or Goldie extending) if and only if for each
closed (or complement) submodule C of M , there is a direct summand D of
M such that CβD. It is clear that the class of G z-extending modules contains
both of the classes of G-extending and CLS modules.

Next result gives equivalent conditions to G z-extending property.

Proposition 2.2. Let M be a module. The following conditions are equivalent.

(i) M is G z-extending;
(ii) For each z-closed submodule Y of M , there exist X ≤ M and a direct

summand D of M such that X ≤e Y and X ≤e D;
(iii) For each z-closed submodule Y of M there exist a complement L of Y

and a complement K of L such that Y βK and every homomorphism
f : K ⊕ L→M extends to a homomorphism g : M →M .

Proof. (i)⇒(ii) Let Y be a z-closed in M . Hence there exist a direct summand
D of M such that Y βD. Now take X = Y ∩D.

(ii)⇒(iii) From (ii), there exist D, D′ such that Y ∩D ≤e Y , Y ∩D ≤e D
and M = D ⊕D′. So, take D = K and D′ = L.
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(iii)⇒(i) Since Y is a complement in M from (iii) and [23, Lemma 3.97], K
is a direct summand of M . Hence M is G z-extending. �

Now we locate the G z-extending condition with respect to several known
generalizations of the extending property.

Proposition 2.3. Let M be a module. Let us consider the following conditions:

(i) M is CS.
(ii) M is G-extending.
(iii) M is CLS.
(iv) M is G z-extending.
(v) M is C z

11 .

Then (i)⇒(ii)⇒(iii)⇒(iv)⇒(v). In general, the reverse implications do not
hold.

Proof. (i)⇒(ii) and (iii)⇒(iv) are clear.
(iv)⇒(v) follows from [1, Proposition 1.6].
(ii)⇒(iii) Let N be a z-closed submodule of M . There exists a direct sum-

mand D of M such that N ∩ D ≤e N and N ∩ D ≤e D. Since M/N ∼=
M/(N ∩ D) /N/(N ∩ D), N/(N ∩ D) is z-closed in M/(N ∩ D). Hence
Z(Z(M/(N ∩ D))) ≤ Z(N/(N ∩ D)) = N/(N ∩ D) ≤ Z(M/(N ∩ D)) which
gives that Z(M/(N ∩D)) = N/(N ∩D). Thus D/(D∩N) = Z(D/(D∩N)) ≤
Z(M/(N ∩D)) = N/(N ∩D). It follows that D/(N ∩D) ≤ N/(N ∩D), i.e.,
N ∩D ≤ D ≤ N . Since N ∩D ≤e N , we have that D = N . Thus M is CLS.

(ii)6⇒(i) Let M be the Z-module (Z/Zp) ⊕ Q where p is any prime integer.
Then MZ is G-extending by [1, Corollary 3.3]. However, MZ is not extending
[19, Example 10].

(iii)6⇒(ii) Let F be a field and V be a vector space over F with dim(VF ) = 2.
Let R be the trivial extension of F with V , i.e.,

R =
[
F V

/

0 F

]
=
{[

f v
0 f

]
: f ∈ F, v ∈ V

}
.

Then RR is CLS because it does not have any proper z-closed submodule.
Since RR is indecomposable which is not uniform, RR is not G-extending (see
[1, Proposition 1.8]).

(iv) 6⇒(iii) Let K be a field of characteristic p > 0. Let G = 〈x : xp = 1〉,
the cyclic group of order p. Let R denote the group algebra K[G]. Then R is
(Quasi-)Frobenious algebra and hence self-injective Artinian ring (see [17, pages
79 and 405]). In particular, RR is uniform and hence R is a CS-ring. Note
that the augmentation ideal, P = R(x − 1) is the unique maximal ideal of R,
and the only ideals of R are: R > P > P 2 > · · · > P p = 0. Now, let M
be the R-module R ⊕ (R/P ). By Corollary 3.4(ii), M is a G z-extending R-
module. On the other hand, N = P ⊕ 0̄ is a submodule of M and Z(M/N) =
Z((R ⊕ R/P ) / (P ⊕ 0̄)) = Z(R/P )⊕ Z(R/P ) = 0̄⊕ 0̄. It follows that N is a
z-closed submodule of M . If N were a direct summand of M , then we would
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have P is a direct summand of R, which gives a contradiction. Hence MR is
not a CLS-module.

(v)6⇒(iv) Let R be the 2-by-2 upper triangular matrix ring over integers,
i.e., R =

[
Z Z
0 Z
]
. Then RR is a C11-module which yields that RR is a C z

11 -
module. It is clear that Z(RR) = 0 and RR is not CS. Therefore RR is not
G z-extending. �

Lemma 2.4. Let M be a module. Assume End(MR) is Abelian such that if X
is a z-closed submodule of M , then X = Σ

i∈I
hi(M), where each hi ∈ End(MR).

Then M is C z
11 if and only if M is CLS.

Proof. Let MR has C z
11 and X be a z-closed submodule of M . Then X =

Σ
i∈I
hi(M), where each hi ∈ End(MR). By assumption, there exists e2 = e ∈

End(MR) such that eM is a complement of X in M . Let 0 6= x ∈ X. Then
x = ex+ (1− e)x. But x = Σ

i∈I
hi(mi), where mi ∈M . So ex = e( Σ

i∈I
hi(mi)) =

Σ
i∈I
hi(emi) ∈ X ∩ eM = 0. Hence X ≤e (1 − e)M . Since X is z-closed,

X = (1− e)M . It follows that X is a direct summand of M . Thus M is CLS.
The converse follows from Proposition 2.3. �

Proposition 2.5. Let M be a module.

(i) Let M be a UC-module (e.g., M is nonsingular). Then M is G z-
extending if and only if M is CLS.

(ii) Let End(MR) be Abelian such that if X is a z-closed submodule of
M , then X = Σ

i∈I
hi(M), where each hi ∈ End(MR). Then M is G z-

extending if and only if M is CLS.

Proof. (i) Assume M is a G z-extending module. Let X be any z-closed sub-
module of M . Then there exists a direct summand D of M such that XβD.
Hence X ∩ D ≤e X and X ∩ D ≤e D. Since X is a complement in M , by
UC assumption X = D. So X is a direct summand of M . Hence M is a
CLS-module. The converse follows from Proposition 2.3.

(ii) This part is a consequence of Proposition 2.3 and Lemma 2.4. �

Corollary 2.6. (i) Let M be a nonsingular module. Then M is a G z-extending
module if and only if M is a G-extending module if and only if M is extending.

(ii) The following statements are equivalent for a nonsingular indecomposable
module M :

(1) M is uniform.
(2) M is CS.
(3) M is G-extending.
(4) M is G z-extending.

Proof. (i) Immediate by [22, Lemma 3] (or [23, Lemma 5.58]).
(ii) The proof follows from part (i) and Proposition 2.3 [1, Proposition 1.8].

�
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Proposition 2.7. If M is G z-extending and X is a projection invariant z-
closed submodule of M , then M/X is CLS.

Proof. Let Y/X be a z-closed submodule of M/X. Since

M/Y ∼= (M/X)/(Y/X),

Y is a z-closed submodule of M . By hypothesis, there exists d2 = d ∈ End(MR)
such that Y βdM . Since X is projection invariant in M , X = (X ∩dM)⊕ (X ∩
(1− d)M). Then X ≤ dM because X ∩ dM = X ∩ (Y ∩ dM) ≤e X ∩ Y = X.
Hence dM/X is a direct summand of M/X. Since Y βdM and X is z-closed
in M , by [10, Proposition 1.4], we obtain (Y/X)β(dM/X). Therefore M/X is
G z-extending. By Proposition 2.5(i), M/X is a CLS-module. �

3. Decompositions

There are nonsingular modules M = M1 ⊕M2 in which M1 and M2 are
CLS, but M is not CLS (e.g., let R = Z[x] and take M = Z[x]⊕ Z[x]). From
Proposition 2.5(i), these modules M also show that the class of G z-extending
modules is not closed under direct sums. One of the main objective in this
section is to determine conditions which make direct sum of G z-extending
modules is also G z-extending. For this aim, the following kind of injectivity
works well together with the G z-extending property.

Let N , M be modules. N is said to M -ejective if, for each K ≤ M and
each homomorphism f : K → N , there exists a homomorphism g : M → N
and a X ≤e K such that g(x) = f(x) for all x ∈ X (see [1] or [23]). Observe
that if N is M -injective, then N is M -ejective. The following result generalizes
[7, Lemma 7.5] and appears in [1, Theorem 2.7] (see, also [23, Theorem 2.59]).
For the sake of completeness, we will mention the statement of the former result
and refer to the aforementioned references for the detailed proof.

Lemma 3.1. Let M1 and M2 be modules such that M = M1 ⊕M2. Then M1

is M2-ejective if and only if for every K ≤ M such that K ∩M1 = 0, there
exists M3 ≤M such that M = M1 ⊕M3 and K ∩M3 ≤e K.

Proof. The proof follows by [1, Theorem 2.7] (or [23, Theorem 2.59]). �

Theorem 3.2. Let M = M1 ⊕M2 be a direct sum of modules. Then

(i) If M1 is M2-ejective (or M2 is M1-ejective) and M1 and M2 are G z-
extending, then M is G z-extending.

(ii) Assume M1 is nonsingular. If M1 is M2-injective and M is G z-
extending, then M2 is G z-extending.

Proof. (i) Let Y be a z-closed submodule of M . If Y ∩M1 = 0, then by Lemma
3.1, there exists M3 ≤ M such that M = M1 ⊕M3 and Y ∩M3 ≤e Y . Since
M3
∼= M2, then M3 is G z-extending. Now M3/(Y ∩M3) ∼= (Y +M3)/Y ≤M/Y

yields that Y ∩M3 is a z-closed submodule of M3. By Proposition 2.2, there
exists X ≤e Y ∩M3 and D, a direct summand of M3, such that X ≤e D. Since
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M3 is a direct summand of M , D is a direct summand of M . Now assume
Y ∩M1 6= 0. Then there exists K ≤ Y such that (Y ∩M1) ⊕K ≤e Y . Since
K ∩M1 = 0, by Lemma 3.1, there exists M4 ≤ M such that M = M1 ⊕M4

and K ∩ M4 ≤e K. Since M4
∼= M2, M4 is G z-extending. It can be seen

that Y ∩M1 and Y ∩M4 are z-closed submodules of M1 and M4, respectively.
Thus there exist X1 ≤e Y ∩M1, X2 ≤e Y ∩M4, a direct summand D1 of M1

such that X1 ≤e D1, and D2 a direct summand of M4 such that X2 ≤e D2.
Since X2 ≤e Y ∩M4, X2 ∩ K ≤e K ∩ Y ∩M4 = K ∩M4. It follows that
X2 ∩K ≤e K. So we have that X1 ⊕ (X2 ∩K) ≤e (Y ∩M1)⊕K = Y . Since
X1⊕(X2∩K) ≤ X1⊕X2 ≤ Y , X1⊕X2 ≤e Y . Observe that X1⊕X2 ≤e D1⊕D2

and D1 ⊕ D2 is a direct summand of M1 ⊕M4 = M . Therefore, M is G z-
extending.

(ii) Let Y be a z-closed submodule of M2. Since M/Y = (M1 ⊕M2)/(0 ⊕
Y ) ∼= M1 ⊕ (M2/Y ), by assumption, Y is a z-closed submodule of M . By
Proposition 2.2, there exist X ≤e Y and D ≤ M such that X ≤e D and D is
a direct summand of M . Then D ∩M1 = 0. By [7, Lemma 7.5], there exists
M ′ ≤M such that M = M1 ⊕M ′ and D ≤M ′. There exists an isomorphism
α : M ′ → M2 such that α(x) = x for all x ∈ X (i.e., α = π2|

M ′
). Let

D2 = α(D). Then X ≤e D2 and D2 is a direct summand of M2. Hence M2 is
G z-extending. �

Corollary 3.3. Let M =
n
⊕
i=1

Mi be a finite direct sum. If Mi is Mj-ejective

for all j > i and each Mi is G z-extending, then M is G z-extending.

Proof. An induction argument similar to that in [1, Corollary 3.2] and Theorem
3.2 yields the result. �

Corollary 3.4. Let M = M1 ⊕M2. Then

(i) If M1 is injective and M2 is G z-extending, then M is G z-extending.
(ii) If M1 is G z-extending and M2 is semisimple, then M is G z-extending.

Proof. Since in parts (i) and (ii) M1 is M2-injective, the proof follows from
Theorem 3.2. �

Example 3.5. (i) Let M1 and M2 be Abelian groups (i.e., Z-modules) with
M1 divisible and M2 = Z/Zpn, where p is a prime and n is a positive integer.
Corollary 3.3 yields that M = M1⊕M2 is G z-extending. Recall that M is not
extending when M1 = Q (see [19]).

(ii) Let M1 be a G z-extending module with a finite composition series 0 =
X0 ≤ X1 ≤ · · · ≤ Xm = M1. Let M2 = Xm/Xm−1 ⊕ · · · ⊕X1/X0. Then M =
M1 ⊕M2 is G z-extending by Corollary 3.4(ii). However, M is not extending,
in general (see [7, Corollary 7.4]).

Proposition 3.6. Let M be a G z-extending module N a z-closed submodule
of M .
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(i) If for each e2 = e ∈ End(MR), there exists f2 = f ∈ End(NR) such
that N ∩ eM ≤e fN , then N is G z-extending.

(ii) If for each e2 = e ∈ End(MR), there exists f2 = f ∈ End(MR) such
that eMβfM and fN ⊆ N , then N is G z-extending. In particular, all
projection invariant z-closed submodules of M are G z-extending.

Proof. (i) Let Y be a z-closed submodule of N . Hence Y is a z-closed sub-
module of M . By Proposition 2.2, there exist X ≤e Y and e2 = e ∈ End(MR)
such that X ≤e eM . Then X ≤e eM ∩N ≤e fN for some f2 = f ∈ End(NR).
Thus N is G z-extending.

(ii) Let Y be a z-closed submodule of N . Then Y is a z-closed submodule
of M . Then there exists e2 = e ∈ End(MR) such that Y βeM . Hence Y βfM .
Since fN ⊆ N , N is G z-extending. �

Theorem 3.7. Let K be a projection invariant z-closed submodule of M . If
M is G z-extending, then there exists M1 ≤M such that M = M1⊕K and M1

and K are G z-extending.

Proof. There exists e2 = e ∈ End(MR) such that KβeM . But K = eK ⊕ (1−
e)K, eK = K ∩ eM , and (1 − e)K = K ∩ (1 − e)M because K is projection
invariant. Since KβeM , then eK ≤e eM and eK ≤e K. Hence K∩(1−e)M =
0. So K = eK ≤e eM . Since K is z-closed in M , eM/K = Z(eM/K) ≤
Z(M/K) = 0. It follows that eM = K. Let M1 = (1 − e)M . Therefore
M = M1 ⊕K. Observe that, by Proposition 3.6(ii), K is G z-extending.

Now, let us show that M1 is G z-extending. Since M/K ∼= M1, M1 is a
CLS-module, by Proposition 2.7. Then Proposition 2.3 yields that M1 is G z-
extending. �

As a direct consequence of Theorem 3.7, we have the following corollary.

Corollary 3.8. If M is G z-extending and M = ⊕
i∈I

Mi, where each Mi is

projection invariant z-closed submodule of M , then Mi is G z-extending.

Recall that the decomposition M = A ⊕ B is said to be exchangeable if
for any direct summand X, there exist A′ ≤ A and B′ ≤ B such that M =
X ⊕A′ ⊕B′ (see [14, Definition 4]). It is known that if M is G-extending and
the decomposition M = A⊕B is exchangeable, then A is also G-extending (see
[12, Lemma 2.3]). Next we show that a similar result to the aforementioned
fact holds for Gz-extending modules.

Proposition 3.9. If M is G z-extending and the decomposition M = M1 ⊕
M2 is exchangeable, then M1 is also Gz-extending. In particular, if M is
Gz-extending with the finite internal exchange property, then so is any direct
summand of M .

Proof. Let X be z-closed in M1. By M/(X⊕M2) ∼= M1/X, X⊕M2 is z-closed
in M . Since M = M1 ⊕M2 is exchangeable and Gz-extending, there exist a
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decomposition M = D⊕M ′1⊕M ′2 and an essential submodule Y of D such that
Y ≤e X ⊕M2 and M ′i ≤ Mi (i = 1, 2). Since M ′2 = 0, M1 = M ′1 ⊕ (D ∩M1).
Now Y ≤e D and Y ≤e X ⊕M2 yield that Y ∩M1 ≤e D ∩M1 and Y ∩M1 ≤e

(X ⊕M2) ∩M1 = X. It follows that M1 is Gz-extending. �

Observe that if M1 and M2 are projection invariant, then M = M1 ⊕M2

is exchangeable. The converse is not true in general. Using the latter result,
Corollary 3.8 can also be obtained without any further proof.

Our next a few results provide applications of Theorems 3.2, 3.7 in terms of
left exact preradicals. To this end, for left exact preradicals see [20]. First, we
need to have the following basic lemma.

Lemma 3.10 ([1, Proposition 2.2]). Let ρ be a left exact preradical and M =
M1 ⊕M2, where ρ(M) ≤e M2. Then M1 is M2-ejective.

Corollary 3.11. If M = M1 ⊕M2, where M1 and M2 are G z-extending and
ρ(M) ≤e M2 for some left exact preradical ρ, then M is G z-extending.

Proof. By Lemma 3.10, M1 is M2-ejective. Now, by Theorem 3.2(i), M is
G z-extending. �

Corollary 3.12. Let ρ be the radical for a stable hereditary torsion theory (e.g.,
ρ = Z2). Then a module M is G z-extending if and only if M = M1 ⊕M2,
where M1 and M2 are G z-extending, and ρ(M) = M2.

Proof. Since ρ(M) is a projection invariant z-closed submodule, M = M1 ⊕
ρ(M) for some M1 ≤ M . Then both ρ(M) and M2 are G z-extending by
Theorem 3.7. The converse follows from Corollary 3.11. �

Observe that M in Example 3.5(i) can be decomposed as M = M1⊕M2, but
M1 = A⊕B where A is torsion-free and B is torsion. Then M = A⊕B ⊕M2

and Z2(M) = B⊕M2. Hence Example 3.5(i) provides a nonextending module
M which illustrates Corollary 3.11.

Corollary 3.13. Let M be a G z-extending module. Then

(i) If D is a direct summand of M such that Z(D) = 0, then D is CLS.
(ii) Every direct summand of M is G z-extending if and only if every direct

summand of Z2(M) is G z-extending.

Proof. (i) There exists C ≤M such that M = C⊕D. Then Z2(M) = Z2(C) =
C ∩ Z2(M). By Corollary 3.12, C = Z2(M) ⊕ B for some B ≤ C, and M =
Z2(M) ⊕ B ⊕ D, where B ⊕ D is CLS by Proposition 2.5(i). [22, Lemma 7]
yields that D is CLS.

(ii) (⇒) Since M is G z-extending, Corollary 3.12 yields that Z2(M) is a
G z-extending direct summand of M . Since every direct summand of Z2(M)
is a direct summand of M , by assumption every direct summand of Z2(M) is
G z-extending.
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(⇐) Let D be a direct summand of M . There exists C ≤ M such that
M = C ⊕ D. Then Z2(M) = Z2(D) ⊕ Z2(C). Hence D = Z2(D) ⊕ D1 for
some D1 ≤ D. By part (i), D1 is CLS. By hypothesis, Z2(D) is G z-extending.
From Corollary 3.12, D is G z-extending. �

The following properties are well known and work well as companion condi-
tions with the extending condition and its generalizations (see [23]). A module
M is said to have: (1) the C2 property if X ≤ M is isomorphic to a direct
summand of M , then X is a direct summand of M ; (2) the C3 property if
whenever M1 and M2 are direct summands of M such that M1 ∩M2 = 0, then
M1 ⊕M2 is a direct summand of M ; (3) the summand intersection property,
SIP , if whenever M1 and M2 are direct summands of M , then M1∩M2 is a di-
rect summand of M . As in the G-extending case, it is unknown to the authors
whether or not the G z-extending property is inherited by direct summands.
The following result and its corollary bring affirmative answers in some special
cases for the aforementioned problem.

Theorem 3.14. Let M be a G z-extending module. If M has SIP or satisfies
the C3 condition, then any z-closed direct summand of M is G z-extending.

Proof. Let M = N ⊕N ′ for some submodules N , N ′ of M where N is z-closed
in M . Using Proposition 3.6(i), where N is taken to be z-closed in M and
applying the SIP gives that N is a G z-extending module.

Now assume that M satisfies the C3 condition. Let π : M → N be the
canonical projection. Let K be any z-closed submodule of N . Since N is z-
closed in M , K is z-closed in M . By hypothesis, there exists a direct summand
L of M such that K∩L ≤e K and K∩L ≤e L. Since M satisfies C3 condition,
N ′ ⊕ L is a direct summand of M . It can be seen that N ′ ⊕ L = N ′ ⊕ π(L)
(see [23, Lemma 2.71]). Hence π(L) is a direct summand of N . For any
0 6= y ∈ π(L), y = π(x) for some 0 6= x ∈ L. There exists an r ∈ R such
that 0 6= xr ∈ K ∩ L. So xr = k = x1, where k ∈ K and x1 ∈ L. Now
0 6= xr = π(x)r = k = π(x1) ∈ K ∩ π(L). It follows that K ∩ π(L) ≤e π(L).
It is clear that π(L) = N ∩ (N ′ ⊕ π(L)) = N ∩ (N ′ ⊕ L). Hence K ∩ π(L) =
K ∩ (N ′ ⊕ L) ≤e K. Thus N is G z-extending. �

Corollary 3.15. Let M be a G z-extending module. If M satisfies the C2

condition, then any z-closed direct summand of M is G z-extending.

Proof. Since C2 condition implies the C3 condition, the proof follows by The-
orem 3.14. �

4. Extensions

It is easy to see that if M is a G-extending or C11-module with uniform
dimension 2, then M is a direct sum of uniform submodules. However, if M is
a G z-extending module with uniform dimension 2, M need not to be a direct
sum of uniform submodules (see, Proposition 2.3(iii) 6⇒(ii)). In this section, we
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investigate G z-extending essential extensions of a module or ring. We show
that if a ring is right G z-extending, then so is its essential overring. Moreover,
it is shown that the G z-extending property is inherited by its rational hull.
Furthermore, we provide some applications including matrix rings over a right
G z-extending ring.

Let us begin with the following useful result which provides relative injec-
tivity on certain direct summands of a G-extending module (or nonsingular
G z-extending module, by Corollary 2.6). First note that there are examples
which show that if M1 = Soc(M1) and Soc(M2) = 0, then M = M1⊕M2 need
not to be G-extending, in general (see [23, page 185]).

Proposition 4.1. Let R be any ring, M1 a semisimple right R-module, and
M2 a right R-module with zero socle such that M = M1⊕M2 is a G-extending
UC-module. Then M1 is M2-injective.

Proof. Obviously, M1 = Soc(M). Let N be any submodule of M2, and let
ϕ : N → M1 be a homomorphism. Let L = {x − ϕ(x) : x ∈ N}. Then L is a
submodule of M and L ∩M1 = 0. There exist submodules K, K ′ of M such
that M = K ⊕K ′, K ∩L ≤e L and K ∩L ≤e K. It is clear that K is a closure
of K ∩ L in M . By hypothesis, L ≤ K. Since K ∩ L ∩M1 = L ∩M1 = 0,
K ∩ L ∩ Soc(M) = Soc(L) = 0. It follows that Soc(K) = K ∩M1 = 0. Hence
M1 = Soc(M) ⊆ K ′. Thus K ′ = M1⊕(K ′∩M2) and M = K⊕M1⊕(K ′∩M2).
Let π : M → M1 denote the canonical projection with kernel K ⊕ (K ′ ∩M2).
Let θ be the restriction of π to M2. Then θ : M2 → M1. Let x be any
element of N . Since x = (x− ϕ(x)) + ϕ(x), θ(x) = ϕ(x). It follows that M1 is
M2-injective. �

Corollary 4.2. (i) Let M =
n
⊕
i=1

Mi, where each Mi is uniform. If E(Mi) 6∼=
E(Mj) for all i 6= j, then M is G z-extending.

(ii) Let S be a simple module and M1, M2 ≤ E(S). If there exists a homo-
morphism h : M2 → S such that h(S) 6= 0, then M = M1⊕M2 is G z-extending.

Proof. (i) From [1, Corollary 4.11], M is G-extending. Thus Proposition 2.3
gives that M is CLS and hence it is G z-extending.

(ii) By [1, Corollary 4.14], M1 is M2-ejective and so it is G-extending. Now,
by Proposition 2.3, M is G z-extending. �

Example 4.3. (i) Let M be the Z-module (Z/Zp) ⊕ Q and let T be the
polynomial ring Z[x]. Then MZ is included in Corollary 4.2(i). On the other
hand, it is well known that T 2 is not a G z-extending T -module [23] (or [7]).
Hence we obtain that the condition E(Mi) 6∼= E(Mj) for all i 6= j, is not
superfluous in Corollary 4.2(i).

(ii) Let K be a field and R = K[x, y], the commutative local Frobenious
K-algebra (see [1, Example 4.15]) defined by the relations xy = x2 − y2 = 0.
Then RR is a uniform injective module with simple submodule Kx2. Let
M2 = xR = {k1x + k2x

2 : ki ∈ K}, and let h be the R-homomorphism,
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h : xR→ Kx2, defined by h(k1x+ k2x
2) = k2x

2. Then h(Kx2) 6= 0. Thus, by
Corollary 4.2(ii), M = M1 ⊕ xR is G z-extending for any M1 ≤ RR.

In the shed light of second part of Example 4.3(i), we have the following fact
on G z-extending modules with Goldie dimension 2.

Lemma 4.4. If MR is a G z-extending module with uniform dimension 2, then
every direct summand of M is G z-extending.

Proof. Let K be any direct summand of M . If K = M , then by hypothesis
K is G z-extending. Assume that K 6= M . Then K is uniform. So K is
G z-extending. �

It is natural to think of whether G z-extending property is closed under
essential extensions of a module or not. However, the next example provides a
negative answer, i.e., there exists a G z-extending module which has an essential
extension that does not enjoy the G z-extending property.

Example 4.5. Let F be any field and R =
[
F F F
0 F 0
0 0 F

]
. It is straightforward to

see that Soc(RR) ≤e RR. Obviously Soc(R) is a G z-extending right R-module.
However, it is well known that RR is not G z-extending (see [21, Theorem 3.4]).

In contrast to essential extensions of a module which satisfies G z-extending
condition, we have the following useful result. First recall that S is a right
essential overring of a ring R if S is an overring of R such that RR is essential
in SR (see, for example [4, 23]).

Theorem 4.6. Let S be a right essential overring of R (i.e., RR ≤e SR). If
RR is G z-extending, then SR and SS are G z-extending.

Proof. Let YR be any z-closed submodule of SR. It is easy to see thatX = Y ∩R
is a z-closed submodule of RR. By Proposition 2.2, there exist KR ≤ RR and
e2 = e ∈ R such that KR ≤e XR and KR ≤e eRR. Observe that KR ≤e YR.
Now, let us show that KR ≤e eSR. Let 0 6= es ∈ eS. There exists r1 ∈ R such
that 0 6= esr1 ∈ R. Hence 0 6= esr1 ∈ eR, so there exists r2 ∈ R such that
0 6= esr1r2 ∈ K. Thus KR ≤e eSR. By Proposition 2.2, SR is G z-extending. A
proof similar to the above shows that KSS ≤e YS and KSS ≤e eSS . Therefore
SS is G z-extending. �

Corollary 4.7. Let T = Tm(R) and M = Mm(R). If TT is G z-extending,
then MT and MM are G z-extending.

Proof. This result is a consequence of Theorem 4.6, and the fact that MT is a
rational extension of TT . �

In [15,16], Osofsky raised the following question: if E(R) has a ring multipli-
cation which extends its right R-module scalar multiplication, must E(RR) be
right self-injective? In [5], examples were constructed giving a negative answer
to this question. The next result shows that for such a ring R, E(R) must be
at least right G z-extending.
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Corollary 4.8. Let RR be G z-extending. If E(R) has a ring multiplication
which extends its right R-module scalar multiplication, then E(R)E(R) is G z-
extending.

Next theorem shows that if a module satisfies G z-extending condition, then
so its rational hull. Recall that for a module M , the rational hull of M is
defined as the following submodule of E(M):

Ẽ(M) = {x ∈ E(M) : h(M) = 0⇒ h(x) = 0 for all h ∈ End(E(M))} .

Notice that E(M) ∼= Ẽ(M) whenever M is nonsingular (see [13]).

Theorem 4.9. If M is G z-extending, then Ẽ(M) is G z-extending.

Proof. Let K be a z-closed submodule of Ẽ(M). Then X = K∩M is a z-closed
submodule of M . By hypothesis, there exist Y ≤ MR and e2 = e ∈ End(MR)
such that Y ≤e X and Y ≤e eM . Observe that Y ≤e K. By [13], there

exists f ∈ End(Ẽ(M)) such that f |
M

= e. Since E(M) is injective, there exists

ē ∈ End(E(M)) such that ē|
Ẽ(M)

= f . Let m ∈ M . Then [ē − ē2](m) =

[e− e2](m) = 0. From the definition of Ẽ(M), [ē− ē2](y) = 0 for all y ∈ Ẽ(M).

Hence f = f2. By eM ≤e f(Ẽ(M)), Y ≤e f(Ẽ(M)). It follows that Ẽ(M) is
G z-extending. �

Proposition 4.10. Let M be a right R-module and let N be a submodule of
M , where R = ReR for some idempotent e in R and S = eRe. Then

(i) N ≤e MR if and only if Ne ≤e (Me)S.
(ii) N is z-closed in MR if and only if Ne is z-closed in (Me)S.

Proof. (i) It follows from [23, Proposition 2.77(i)].
(ii) Assume that Z(Me/Ne)S = 0̄. Let m + N ∈ Z(M/N)R. Let r ∈

R. Therefore, (m + N)re = mre + N ∈ Z(M/N)R. There exists F ≤e RR

such that (mre + N)F = 0̄. Now, it is clear that eR ∩ F ≤e eR. By (i),
(eR ∩ F )e ≤e (eRe)S = SS . But mre + Ne ∈ Me/Ne and (eR ∩ F )e ≤
Fe ≤ F . Thus, (mre + Ne)(eR ∩ F )e ⊆ (mre + N)(eR ∩ F )e = 0̄ yields
that (mre + Ne)(eR ∩ F )e = 0̄. Then mre + Ne = 0̄ because (Me/Ne)S
is nonsingular. Hence (m + Ne)Re = 0̄. Therefore (m + Ne)ReR = 0̄, so
that (m + Ne)R = 0̄, i.e., m + Ne = 0̄. It follows that m ∈ Ne ⊆ N , and
hence m ∈ N . So m + N = 0̄. Now, suppose that Z(M/N)R = 0̄. Let
me + Ne ∈ Z(Me/Ne)S . Then (me + Ne)G = 0̄ for some G ≤e SS . By (i),
GR ≤e (eR)R. Thus GR⊕(1−e)R ≤e RR. Since (me+N)[GR⊕(1−e)R] = 0̄,
me+N ∈ Z(M/N)R. Hence me+N = 0̄ which implies that me+Ne = 0̄. So
Z(Me/Ne)S = 0̄. �

Theorem 4.11. Let M be a right R-module, where R = ReR for some idem-
potent e in R, and let S = eRe. Then
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(i) The right R-module M is G z-extending if and only if the right S-module
Me is G z-extending.

(ii) RR is G z-extending if and only if the right S-module Re is G z-extend-
ing.

Proof. The proof follows from Proposition 4.10 and [23, Proposition 2.77(iii)].
�

Corollary 4.12. Let R be any ring. Then Mm(R) is G z-extending if and only
if the free right R-module Rm is G z-extending.

Proof. It is clear that Mm(R) = Mm(R)eMm(R), where e is the matrix unit
with 1 in the (1,1)th position and zero elsewhere. The result now follows from
Theorem 4.11. �

Without any further proof Theorem 4.11 and Corollary 4.12 hold true when-
ever G z-extending condition replaced with CLS in their statements.

Example 4.13. LetR be the polynomial ring Z[x]. ThenM2(R) = M2(Z[x]) ∼=
M2(Z)[x]. Note that M2(Z) is a right G z-extending ring by Corollary 4.12.
However, by Example 4.3 Z[x]⊕Z[x] is not a G z-extending Z[x]-module. Now,
Corollary 4.12 yields that M2(Z[x]) is not G z-extending.

Observe that Example 4.13 makes it clear that over a right G z-extending
ring neither the ring of polynomials nor the full matrix ring need to be a right
G z-extending, in general. Thus, being G z-extending is not a Morita invariant
property.

Corollary 4.14. If Tm(R) is G z-extending, then the free right R-module Rm

is G z-extending.

Proof. It follows by [3, Corollary 1.8(ii)], Corollaries 4.7 and 4.12. �

It is not known so far whether direct summands of a G-extending module
enjoy with the property (see [1,23]). Like the former case the authors desire to
obtain whether the G z-extending property is inherited by its direct summands
or not? We think of it is legitimate to deal with the following open problem
which is actually based on the aforementioned cases.

Open problem. In Theorem 3.2(ii) whether the assumption Z(M1) = 0 is
superfluous or not?
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Frontiers in Mathematics, Birkhäuser/Springer, 2016. https://doi.org/10.1007/978-

3-0348-0952-8

https://doi.org/10.1080/00927872.2010.529096
https://doi.org/10.1016/j.jalgebra.2006.06.034
https://doi.org/10.1007/978-0-387-92716-9
https://doi.org/10.1016/j.jalgebra.2007.03.016
https://doi.org/10.1016/j.jalgebra.2007.03.016
https://doi.org/10.11650/tjm.18.2014.3388
https://doi.org/10.11650/tjm.18.2014.3388
https://doi.org/10.1112/plms/s3-10.1.201
https://doi.org/10.1080/00927872.2017.1404080
https://doi.org/10.1080/00927872.2017.1404080
https://doi.org/10.1080/00927872.2015.1087536
https://doi.org/10.1080/00927872.2015.1087536
https://doi.org/10.1007/978-1-4612-0525-8
https://doi.org/10.1081/AGB-120013218
https://doi.org/10.1080/00927879508825228
https://doi.org/10.1080/00927879508825228
https://doi.org/10.1216/rmjm/1181072161
https://doi.org/10.1007/978-3-0348-0952-8
https://doi.org/10.1007/978-3-0348-0952-8


468 A. TERCAN, R. YAŞAR, AND C. C. YÜCEL

Adnan Tercan

Department of Mathematics

Hacettepe University
Ankara 06532, Turkey

Email address: tercan@hacettepe.edu.tr

Ramazan Yaşar
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