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Abstract. We study the factoriality of a nodal quartic hypersurface V4

in P4 when there is a hyperplane in P4 containing all the nodes of V4. As

an application, we obtain new examples of irrational quartic 3-folds.

All considered varieties are assumed to be projective, normal, and defined
over the complex number field C.

1. Introduction

A variety is called factorial if every Weil divisor on it is Cartier. This in-
nocent definition is quite subtle when realized on a projective variety. It does
depend both on the kind of singularities and on their position. Note that a
smooth hypersurface in P4 is always factorial. A hypersurface is called nodal
if all its singular points are only ordinary double points, i.e., nodes. The fac-
toriality problem of a nodal hypersurface in P4 has been considered by several
authors for a long time [3–6,17,22–24,28].

We will restrict ourselves to the case where the degree of hypersurfaces in
P4 is 4. Let V4 ⊂ P4 be a nodal quartic hypersurface. Then the Grothendieck-
Lefschetz theorem [16, Chapter IV, Corollary 3.3] says that Cartier divisors
on V4 are restrictions of Cartier divisors on P4, i.e., that Pic V4 ∼= Z[OV4

(1)].
However, no such result holds for Cl V4, where Cl V4 denotes the class group
of V4, namely the group of linear equivalence classes of Weil divisors. More
precisely, since V4 is projectively normal and nonsingular in codimension 1, the
restriction map

Cl P4 −→ Cl V4

is an isomorphism precisely when Cl V4 = Pic V4 = Z. In this case we say that
V4 is factorial. In general, we have

Cl V4 = Pic V4 ⊕ Zδ,
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where the number δ is the defect of V4. From the equivalent condition (3) in
Section 2, the defect is a global topological invariant that measures how far
V4 is from being factorial, or, in other words, to what extent Poincaré duality
fails on V4. A lot of the birational geometry of singular varieties depends
on the factoriality condition. For instance, Mella proved in [24] that every
factorial nodal quartic 3-fold is irrational. In particular, the rationality of a
nodal determinantal quartic 3-fold is due to the lack of factoriality and not to
the presence of singularities [24].

Example 1.1 ([25]). Every general determinantal quartic 3-fold is nodal, non-
factorial, rational, and it has 20 nodes.

Results of [24] generalize a classical result by Iskovskikh and Manin [18] that
all smooth quartic 3-folds are irrational.

There exist non-factorial irrational nodal quartic 3-folds in P4 [4, Theorem
11].

Theorem 1.1. If V4 ⊂ P4 is a sufficiently general quartic 3-fold that contains
a smooth del Pezzo surface S4 ⊂ P4 of degree 4, then V4 is nodal, non-factorial
and irrational, and has #|Sing(V4)| = 16.

For a given variety, it is one of the most essential questions to decide whether
it is rational or not. This question has been considered in depth for smooth
3-folds [1, 2, 7, 8, 10, 18, 19, 25–27, 29]. This is why it is important to study the
factoriality of a nodal quartic hypersurface V4 in P4.

Remark 1.1. Every quadric 3-fold in P4 is rational. Clemens and Griffiths
showed that a smooth cubic 3-fold is irrational [10, Theorem 13.12]. Every
nodal hypersurface in P4 of degree at least 5 is irrational.

The following theorem is the main result in the paper [4] by Cheltsov.

Theorem 1.2. A nodal quartic V4 is factorial if it has at most 9 nodes and
contains no planes.

Theorem 1.2 has been improved.

Theorem 1.3 ([28, Theorem 1.3]). A nodal quartic V4 is factorial if it has at
most 11 nodes and contains no planes. If V4 has 12 nodes, then V4 is factorial
with the exception of the case when V4 contains a quadric surface.

Theorem 1.4 ([17, Theorem 1.3]). A nodal quartic V4 is factorial if it has at
most 13 nodes and contains neither planes nor quadric surfaces.

Examples 2.1, 2.2, 2.3, 3.1 and Lemmas 3.3, 3.4 enable us to propose the
conjecture below.

Conjecture 1.1. A nodal quartic V4 is factorial if it has at most 16 nodes,
does not contain any of planes, and quadric surfaces, and (possibly singular)
del Pezzo surfaces of degree 4.
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In this paper, we prove the following.

Theorem 1.5. Assume that there is a hyperplane in P4 containing all the
nodes of a nodal quartic V4.

(1) If #|Sing(V4)| > 20, then V4 is not factorial;
(2) V4 is factorial if #|Sing(V4)| ≤ 20, and V4 contains neither planes nor

quadric surfaces.

Corollary 1.1. A nodal quartic V4 is irrational if it has at most 20 nodes,
contains neither planes nor quadric surfaces, and there is a hyperplane in P4

containing all the nodes of V4.

Corollary 1.2. Assume that there is a hyperplane in P4 containing all the
nodes of V4. Then Conjecture 1.1 is true.

Proof. The statement immediately follows from Theorem 1.5. �

Remark 1.2. A nodal quartic V4 cannot have more than 45 nodes [15, 30].
Moreover, there is a unique nodal quartic 3-fold with 45 nodes [12]. It is known
as the Burkhardt quartic, which has too many nodes to be factorial. In fact, if
V4 is factorial, then it must have at most 35 nodes because h0(P4,OP4(3)) = 35
(This immediately follows from the equivalent condition (4) in Section 2).

2. Preliminaries

Let Vd be a nodal hypersurface of degree d in P4 given by the equation

h(x, y, z, t, w) = 0 ⊂ P4 ∼= Proj
(
C[x, y, z, t, w]

)
,

where h is a homogeneous polynomial of degree d in P4. Then it is well-known
that the following conditions are equivalent [9, 13,16]:

(1) Vd is factorial;
(2) the quotient ring

C[x, y, z, t, w]
/
〈h(x, y, z, t, w)〉

is a unique factorization domain;
(3) dimH4(Vd,Z) = dimH2(Vd,Z);
(4) the nodes of Vd impose independent linear conditions on homogeneous

forms of degree 2d− 5 in P4 (global sections of H0(OP4(2d− 5)));
(5) any surface in Vd is the complete intersection of Vd with a hypersurface

of P4.

From the equivalent condition (2), we present some non-factorial hypersur-
faces in P4.

Example 2.1. Let Vd be a nodal hypersurface of degree d > 1 in P4 ∼=
Proj

(
C[x, y, z, t, w]

)
given by the equation

xf(x, y, z, t, w) + yg(x, y, z, t, w) = 0,
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where f and g are general homogeneous polynomials of degree d−1 in P4. Then
Vd has exactly (d−1)2 nodes and contains the plane π defined by {x = y = 0}.
Hence, by the condition (5), Vd is not factorial.

Example 2.2. Let Vd be a nodal hypersurface of degree d > 2 in P4 ∼=
Proj

(
C[x, y, z, t, w]

)
given by the equation

xf(x, y, z, t, w) + (yz + tw)g(x, y, z, t, w) = 0,

where f and g are general homogeneous polynomials of degree d− 1 and d− 2
in P4, respectively. Then Vd has exactly 2(d− 1)(d− 2) nodes and contains the
quadric surface U defined by {x = yz + tw = 0}. Hence, by the condition (5),
Vd is not factorial.

Now, we present a factorial nodal quartic hypersurface in P4 which contains
neither planes nor quadric surfaces. In particular, there is a hyperplane in P4

containing all the nodes of this nodal quartic 3-fold.

Example 2.3. Let S be a nodal quartic surface in P3. Then #|Sing(S)| ≤ 16.
Suppose that S is given by the equation

f(x0, x1, x2, x3) = 0

for some quartic homogeneous polynomial f . Here x0, x1, x2, x3 are coordi-
nates on P3. Since we have h0(P3,OP3(3)) = 20, one can find a cubic homo-
geneous polynomial h(x0, x1, x2, x3) that vanishes at every nodes of the sur-
face S. Consider the quartic hypersurface in P4 that is given by the equation
g(x0, x1, x2, x3, x4) = 0,

g(x0, x1, x2, x3, x4) := x4h(x0, x1, x2, x3) + αf(x0, x1, x2, x3),

where α is a general complex number, and x0, x1, x2, x3, x4 are coordinates
on P4. By Bertini theorem, this quartic 3-fold has exactly s, s = #|Sing(S)|,
nodes, which we can identify with the nodes of the surface S contained in the
hyperplane, {x4 = 0}. Furthermore, one can show that this quartic 3-fold is
nodal. If we take a general element of the pencil, this nodal quartic contains
neither planes nor quadric surfaces in P3. Then, by Theorem 1.5(2), this nodal
quartic is factorial, and hence, by Corollary 1.1, this nodal quartic is irrational.

3. Useful tools

Let Vd be a nodal hypersurface of degree d in P4. From the equivalent
condition (4) in Section 2, the factoriality of Vd is strongly related to the number
and the position of its singularities. For instance, if Vd is factorial, then the
number of nodes of Vd cannot exceed h0(P4,OP4(2d−5)). Furthermore, we see
that the nodes of Vd are located in P4 with the following nice properties.

Lemma 3.1. Let Vd be a nodal hypersurface of degree d in P4.

(1) A curve of degree k contains at most k(d− 1) nodes of Vd.
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(2) If a 2-plane contains d(d−1)
2 +1 nodes of Vd, then the plane is contained

in Vd.

Proof. See [6, Lemma 2.9]. �

Lemma 3.2. Let Vd be a nodal hypersurface of degree d in P4, let Ξd,i =
Sing(Vd) ∩ Sing(Si), where Si is an irreducible surface of degree i, and let

#|Ξd,i| be the cardinality of Ξd,i. If Si contains id(d−1)
2 − 2#|Ξd,i|+ 1 nodes of

Vd, then Si ⊂ Vd.

Proof. Suppose that Vd is given by the equation

h(x0, x1, x2, x3, x4) = 0 ⊂ P4 ∼= Proj
(
C[x0, x1, x2, x3, x4]

)
,

where h is a homogeneous polynomial of degree d in P4. Then the singular locus
of Vd is contained in a general hypersurface V ′d =: {Σαi ∂h∂xi

= 0} of degree d−
1 with αi ∈ C. Because Vd has only isolated singularities, Si ∩ V ′d is a curve
of degree i(d − 1). Assume that Si 6⊂ Vd. Then Si ∩ V ′d 6⊂ Vd. Note that the
intersection number of the hypersurface Vd and the curve Si ∩ V ′d is id(d− 1),
and the curve Si∩V ′d is singular at the points of Sing(Vd)∩Sing(Si). Therefore,

Si ∩V ′d cannot meet Vd at more than id(d−1)
2 − 2#|Ξd,i| points of Sing(Vd). �

Also, the following theorem is an application of the modern Cayley-Bacharach
theorem as stated in [14].

Theorem 3.1. Let Γ be a subset of a zero-dimensional complete intersection
of hypersurfaces Xd1 , Xd2 , . . . , XdN of degree di ≥ 1 in PN , and let #|Γ| be the
cardinality of Γ. Then the points of Γ impose dependent linear conditions on
homogeneous forms of degree ΣNi=1di −N − 1 in PN if and only if the equality

#|Γ| =
∏N
i=1 di holds.

Proof. See [23, Theorem 2.6]. �

Let Vd be a nodal hypersurface of degree d in P4. Recall that if the hy-
persurface Vd is factorial, then, for a surface Sr ⊂ Vd of degree r, there is a
hypersurface F ⊂ P4 such that Sr is a complete intersection of Vd and F , so
that in particular the degree r of a surface Sr in Vd is a multiple of d. Thus,
if a surface is contained in Vd and the surface is not a complete intersection of
Vd with another hypersurface in P4, then Vd is not factorial. More precisely,
for a nodal quartic hypersurface in P4, we have the following three results,
i.e., Lemma 3.3, Example 3.1, and Lemma 3.4. The first result is that a non-
factorial nodal quartic hypersurface in P4 contains a surface of degree r, r 6= 4k
with k ∈ N, in a hyperplane in P4, and, in the other two cases, a non-factorial
nodal quartic hypersurface in P4 contains a non-degenerate irreducible surface
of degree r, r = 3, 4, in P4 which is not the complete intersection of V4 with a
hypersurface of P4.
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Lemma 3.3. Let V4 be a nodal quartic hypersurface in P4. If V4 contains a
surface Sr of degree r, r = 1, 2, in P3, then Sr contains at least 3r(4−r) points
of Sing(V4), and V4 is not factorial.

Proof. Suppose that, for r = 1, 2, V4 is given by the equation

h1f3 + urg4−r = 0 ⊂ P4,

where h1, f3, ur and g4−r are homogeneous polynomials of degree 1, 3, r and 4−r
in P4, respectively. Then V4 contains the surface, Sr := {h1 = 0} ∩ {ur = 0},
in P3 ∼= {h1 = 0}. Because V4 has only ordinary double points as singularities,
for any point s ∈ Sing(V4), four hypersurfaces {h1 = 0}, {f3 = 0}, {ur = 0}
and {g4−r = 0} meet transversally at the point s. Therefore, V4 has at least
3r(4 − r) nodes, and Sr contains at least 3r(4 − r) nodes of V4. Let Λ =:
{h1 = 0} ∩ {f3 = 0} ∩ {ur = 0} ∩ {g4−r = 0}. Then Λ ⊆ Sing (V4). Because
Λ is a zero-dimensional complete intersection of four hypersurfaces of degree
1, 3, r, 4− r in P4, the points of Λ impose dependent linear conditions on cubic
forms on P4 by Theorem 3.1. This implies that the points of Sing(V4) impose
dependent linear conditions on cubic forms on P4. Thus, V4 is not factorial by
the equivalent condition (4) in Section 2. �

Example 3.1. The Hirzebruch surface F1 = P(OP1 ,OP1(1)) is isomorphic to
the blow-up of P2 along a point. Consider the blow-up of P2 at one point
p, giving exceptional divisor E. Then the intersection ring on P2 is given by
Z[H,E]/H2 = 1, HE = 0, E2 = −1. We can understand divisors and sections
of divisors in terms of divisors on P2 with certain multiplicities in p. Let’s
consider the divisor class 2H − E. This corresponds to conics in P2 through
the point p, which gives a five-dimensional vector space. It separates points
and tangent vectors. Therefore, we get an immersion of F1 into P4. Also, its
degree is (2H − E)(2H − E) = 3, and hence we obtain a cubic surface in P4.
More precisely, consider the smooth cubic surface S3 given parametrically as
the image of the map

ν : P2 99K P4

which assigns to the homogeneous coordinate [x : y : z] the value

ν : [x : y : z] 7→ [x2 : y2 : xy : xz : yz].

Equivalently, the cubic S3 is a projective variety, defined as the zero locus
of three irreducible quadratic hypersurfaces in P4. Given the homogeneous
coordinates [A : B : C : D : E] on P4, the cubic S3 is the zero locus of the three
homogeneous polynomials

AB − C2 = 0, CE −BD = 0, AE − CD = 0.

Let V4 be a nodal quartic hypersurface in P4 given by the equation

(AB − C2)f2 + (CE −BD)g2 + (AE − CD)h2 = 0,

where f2, g2, and h2 are general homogeneous polynomials of degree 2 in P4.
Then V4 has exactly seventeen nodes and contains the smooth cubic surface
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S3
∼= F1, where F1 is a rational normal scroll. Because the cubic S3 cannot be

written as the complete intersection of V4 with another hypersurface in P4, the
quartic V4 is not factorial.

Lemma 3.4. Let V4 be a nodal quartic hypersurface in P4. If V4 contains a
complete intersection surface S4 of two quadratic hypersurfaces in P4, then S4

contains at least 16 points of Sing(V4), and V4 is not factorial.

Proof. Assume that V4 is given by the equation

h2f2 + u2g2 = 0 ⊂ P4,

where h2, f2, u2 and g2 are quadratic homogeneous polynomials in P4. Then V4
contains the surface, S4 := {h2 = 0} ∩ {u2 = 0}. Because V4 has only ordinary
double points as singularities, for any point s ∈ Sing(V4), four hypersurfaces
{h2 = 0}, {f2 = 0}, {u2 = 0} and {g2 = 0} meet transversally at the point s.
Therefore, V4 has at least 16 nodes, and S4 contains at least 16 nodes of V4. Let
Σ =: {h2 = 0} ∩ {f2 = 0} ∩ {u2 = 0} ∩ {g2 = 0}. Then Σ ⊆ Sing (V4). Because
Σ is a zero-dimensional complete intersection of four quadratic hypersurfaces in
P4, the points of Σ impose dependent linear conditions on cubic forms on P4 by
Theorem 3.1. This implies that the points of Sing(V4) impose dependent linear
conditions on cubic forms on P4. Thus, V4 is not factorial by the equivalent
condition (4) in Section 2. �

Remark 3.1. Example 3.1 and Lemma 3.4 tell us that the statement of Lemma
3.2 is not sharp when a nodal quartic hypersurface in P4 contains a non-
degenerate surface in P4.

To prove the factoriality of a nodal quartic hypersurface in P4 with at least
14 nodes, the following two lemmas are very helpful.

Lemma 3.5. Let V4 be a nodal quartic hypersurface in P4 with

14 ≤ #|Sing(V4)| ≤ 20.

Suppose that there is a hyperplane in P4 containing all the nodes of V4, and the
quartic V4 contains a non-degenerate irreducible surface Sk of degree k such
that Sk 6= V4 ∩ F , where F is a hypersurface in P4. Then one of the following
holds;

(1) V4 contains a plane;
(2) V4 contains a quadric surface;
(3) there is a cubic hypersurface in P4 containing the surface Sk.

Proof. From the statements (1), and (2), we assume that the quartic V4 does
not contain planes and quadrics. Note that, by our assumption, the quartic V4
is not factorial. Suppose that V4 is given by the equation

f4(x0, x1, x2, x3, x4) = 0 ⊂ P4 ∼= Proj
(
C[x0, x1, x2, x3, x4]

)
,

where f4 is a homogeneous polynomial of degree 4 in P4. Then, assume that
there is a unique hyperplane, say H1, in P4 containing all the nodes of V4;
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otherwise, if there is a hyperplane, say H2, in P4 that is different from H1 and
contains all the nodes of V4, then, by Lemma 3.1(2) and #|Sing(V4)| ≥ 14,
the quartic V4 must contain the plane, H1 ∩ H2. Since h0(P4,OP4(3)) = 35,
and #|Sing(V4)| ≤ 20, there is an irreducible cubic hypersurface, say Z3, in P4

containing all the nodes of V4. Now, let f̃4 := h1z3 + f4, where h1, and z3 are
homogeneous polynomials of degree 1, and 3 in P4, respectively, such that H1 is
defined by the equation h1 = 0, and Z3 is defined by the equation z3 = 0, and let

Ṽ4 be defined by the equation f̃4(x0, x1, x2, x3, x4) = 0. Here f̃4 is general in the

pencil. Then, V4, and Ṽ4 have the same nodes, i.e., Sing(V4) = Sing(Ṽ4). This

implies that V4, and Ṽ4 are not factorial at the same time, and then we claim

that the cubic Z3 contains the surface Sk, i.e., V4 (Ṽ4, respectively) contains the

surface Sk of degree k such that Sk is not the complete intersection of V4 (Ṽ4,
respectively) with a hypersurface of P4; by the equation h1z3 +αf4 = 0, α ∈ C,
we have at least 1-dimensional family, say F4, of nodal quartic hypersurfaces
in P4 such that an element of F4 has the same nodes as the quartic V4, and it
is defined by the equation of the form h1z3 + αf4 = 0, α ∈ C. Let F4 ∈ F4.
Then we have rank Pic(F4) = rank Pic(V4) = 1. By the statements (1), and
(2), we assume that F4 and V4 contain neither 2-planes nor quadric surfaces,
and then, by [20, Theorem 1.1] and [21, Remark 11], we have rank Cl(F4) ≤ 6
(rank Cl(V4) ≤ 6, respectively), where Cl(F4) (Cl(V4), respectively) is the group
of Weil divisors on F4 (V4, respectively). Moreover, by [21, Remark 9], the
degree of generators of Cl(F4)/Pic(F4) (Cl(V4)/Pic(V4), respectively) is at most
10. Suppose that the quartic V4 contains surfaces, {Sd1 , . . . , Sdr}, r ≤ 5, of
degree di ≤ 10 such that each surface Sdi is not hypersurface section, and Sdi
is a non-degenerate irreducible surface. Then, since rank Cl(V4) = rank Cl(F4),
and dimF4 ≥ 1, we assume that F4 contains surfaces, {Wd1 , . . . ,Wdr}, r ≤ 5,
of degree di ≤ 10 such that each surface Wdi is not hypersurface section,
and Wdi is a non-degenerate irreducible surface of degree di, i.e., deg(Sdi) =
deg(Wdi). Now, suppose that Sdi 6= Wdi , i.e., Wdi 6⊂ V4. Then, by the equation
h1z3 + αf4 = 0, α ∈ C, we have H1 ∩Wdi ⊂ H1 ∩ F4 = H1 ∩ V4, and hence
the space curve Cdi := Wdi ∩ H1 is contained in the quartic V4. However,
by our assumption, Wdi is not contained in the quartic surface, H1 ∩ V4, and
hence we have Cdi = (Wdi ∩ H1) ∩ V4 6= Wdi ∩ (H1 ∩ V4) = E4di , where
Cdi(E4di , respectively) is a curve of degree di(4di, respectively). This yields a
contradiction. �

Remark 3.2. In the proof of Lemma 3.5, since the quartic V4 is not factorial, by
the equivalent condition (4) in Section 2, and #|Sing(V4)| ≤ 20, the dimension
of the system, |OP4(3) − Sing(V4)|, is at least 16, and hence we see that there
is at least 16-dimensional family of cubic hypersurfaces in P4 containing the
surface Sk.

Lemma 3.6. Let V4 be a nodal quartic hypersurface in P4 with

14 ≤ #|Sing(V4)| ≤ 20.
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Suppose that there is a hyperplane in P4 containing all the nodes of V4, and the
quartic V4 contains a non-degenerate irreducible surface Sk of degree k such
that Sk 6= V4 ∩ F , where F is a hypersurface in P4. Then one of the following
holds;

(1) V4 contains a plane;
(2) V4 contains a quadric surface;
(3) k = 3, and S3 is a 2-fold rational normal scroll in P4;
(4) k = 4, and S4 is a (possibly singular) del Pezzo surface of degree 4;
(5) k = 6, and S6 is the complete intersection of an irreducible cubic hy-

persurface and an irreducible quadratic hypersurface in P4.

Proof. By the statement (1), we assume that the quartic V4 contains no planes.
Then there is a unique hyperplane H1 in P4 containing all the nodes of V4. Also,
by Lemma 3.5, we assume that there is a cubic hypersurface Z3 in P4 containing
the surface Sk. Note that Sk, k ≤ 10, is a non-degenerate surface. Then, by
Remark 3.2, we divide into two cases.

Suppose that Sk = V4 ∩ Z3 ∩ An, where An is a hypersurface of degree n,
n = 2 or n = 3, in P4. Then the nodal quartic V4 is defined by an equation
of the form h1z3 + anb4−n = 0, where H1 is defined by the equation h1 = 0,
and Z3 is defined by the equation z3 = 0, and An is defined by the equation
an = 0, and b4−n is a homogeneous polynomial of degree 4 − n in P4 such
that the intersection points of {h1 = 0}, {z3 = 0}, {an = 0}, and {b4−n = 0}
are singular points of V4. In this case, the quartic V4 contains the plane,
{h1 = 0} ∩ {b1 = 0}, or the quadric surface, {h1 = 0} ∩ {b2 = 0}.

Now, suppose that Sk = V4 ∩ Z3 ∩ An ∩ Cm, where Cm is a hypersurface
of degree m, m = 2 or m = 3, in P4; otherwise, if the surface Sk is the
intersection of V4 with four or more hypersurfaces of P4, then one can prove
in the same way. Then the nodal quartic V4 is defined by an equation of the
form h1z3 + anb4−n + cmd4−m + e4 = 0, where Cm is defined by the equation
cm = 0, and d4−m is a homogeneous polynomial of degree 4−m in P4 such that
Sk ⊂ {h1z3 = 0} ∩ {anb4−n = 0} ∩ {cmd4−m = 0}, and Sing(V4) ⊂ {h1z3 =
0}∩{anb4−n = 0}∩{cmd4−m = 0}, and e4 is a quartic homogeneous polynomial
in P4 such that Sk ⊂ {e4 = 0}, and Sing(V4) = Sing({e4 = 0}). The existence
of the equation, e4 = 0, follows from the proof of Lemma 3.5. Then, for the
value n, we divide into two subcases.

If n = 3, then, assume that V4 contains no planes; otherwise, the quartic
V4 contains the plane, H1 ∩ B1, where the hyperplane B1 in P4 is defined by
the equation b1 = 0. Then, by Lemma 3.1(2) and #|Sing(V4)| ≥ 14, we have
#|(Sing(V4) ∩ Sing(A3)) \ B1| ≥ 8. Since H1 ∩ Sing(A3) ⊂ Sing(H1 ∩ A3),
we have #|Sing(V4) ∩ Sing(H1 ∩ A3)| ≥ 8. Also, since a nodal cubic surface
has at most 4 nodes, the cubic surface, H1 ∩ A3, must be reducible. In this
case, we divide into two subcases. Suppose that H1 ∩ A3 = π ∪ S2, where π
is a plane, and S2 is an irreducible quadric surface. Then, since, by Lemma
3.1(1), a conic curve passes through at most 6 nodes of V4, and S2 has at most
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one node, we have #|Sing(V4) ∩ Sing(H1 ∩ A3)| ≤ 7, and hence this yields a
contradiction. Now, suppose that H1 ∩A3 = π ∪ π̂ ∪ π̄, where π, π̂, and π̄ are
planes. Note that Sing(V4) ⊂ H1 ∩A3. Then, by #|Sing(V4)| ≥ 14, we assume
that π 6= π̂ 6= π̄; otherwise, the quartic V4 contains a plane in H1 ∩ A3. Then,
since #|Sing(V4) ∩ Sing(H1 ∩ A3)| ≥ 8, and Sing(V4) ⊂ H1 ∩ A3, by Lemma
3.1, the quartic V4 must contain a plane in H1 ∩A3.

If n = 2, then, we assume that Z3 is an irreducible cubic; otherwise, we
obtain the statements (3), and (4). Moreover, we assume that Z3 ∩ A2 is
irreducible; otherwise, we obtain the statements (1), (2), and (3). Then, we
get the statement (5), or the quartic V4 contains the quadric surface, H1 ∩B2,
in P3 ∼= H1, where the quadric B2 is defined by the equation b2 = 0. As before,
if m = 3, then the quartic V4 must contain a plane. Thus, we assume that
m = 2. Then n = m = 2, and hence the nodal quartic V4 is defined by an
equation of the form

(3.1) h1z3 + a2b2 + c2d2 + e4 = 0,

where h1, z3, a2, b2, c2, d2 and e4 are homogeneous polynomials of degree 1, 3,
2, 2, 2, 2 and 4 in P4, respectively, such that Sk ⊂ {h1z3 = 0} ∩ {a2b2 =
0} ∩ {c2d2 = 0}. Since Sk is a non-degenerate surface, and it is contained in
the intersection of two quadratic hypersurfaces in P4. Therefore, the surface
Sk is a 2-fold rational normal scroll in P4 (in this case, Z3 = H ∪Q, where H
is a hyperplane in P4, and Q is an irreducible quadratic hypersurface in P4),
or the surface Sk is a del Pezzo surface of degree 4. �

4. Proof of Theorem 1.5

By our assumption, there is a hyperplane in P4 containing all the nodes of a
nodal quartic hypersurface V4 in P4. Therefore, if V4 is factorial, then, by the
equivalent condition (4) in Section 2, it must have at most 20 nodes because
h0(P3,OP3(3)) = 20.

Recall that a nodal quartic hypersurface V4 in P4 is factorial if any surface
in V4 is the complete intersection of V4 with a hypersurface of P4. By Theorem
1.3 in [17], we assume that 14 ≤ #|Sing(V4)| ≤ 20. Also, by our assumption
and Lemma 3.6, the quartic V4 is factorial if it does not contain any of cubic
surfaces, and non-degenerate quartic surfaces, and non-degenerate irreducible
sextic surfaces. From now on, we will prove that the quartic V4 does not
contain any of cubic surfaces in P4, and non-degenerate quartic surfaces in P4,
and non-degenerate irreducible sextic surfaces in P4.

At first, suppose that V4 contains no a surface of degree r, r ≤ 2, and a
cubic surface S3 is contained in V4. Then we have S3 6⊂ P3; otherwise, one
can find a hyperplane H1 in P4 containing S3, and hence, the quartic V4 must
contain the plane, (V4 ∩H1) \ S3, and this contradicts our assumption. Also,
we assume that S3 is irreducible; otherwise, the quartic V4 contains a plane
in S3. Then the cubic S3 is a variety of minimal degree. Since S3 ⊂ P4, by
[11, Theorem 1], the cubic S3 is a 2-fold rational normal scroll and hence, the
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cubic S3 can be written as the intersection of three quadratic hypersurfaces in
P4, i.e., S3 = Q21∩Q22∩Q23 , where Q21 , Q22 , and Q23 are linearly independent
irreducible quadratic hypersurfaces in P4. Then we have Q21 ∩ V4 = S3 ∪ T5,
where T5 is a quintic surface. By Lemma 3.6, the quintic T5 must be reducible.
Then, the quartic V4 contains a plane in T5, or an irreducible quadric surface
in T5, and hence this contradicts our assumption.

From now, suppose that V4 contains no a surface of degree r, r ≤ 3, and a
non-degenerate quartic surface S4 is contained in V4. Then, we assume that S4

is irreducible; otherwise, V4 contains a plane in S4, or an irreducible quadric
surface in S4, and hence this contradicts our assumption. Then, S4 is a non-
degenerate irreducible surface of degree 4 in P4. Furthermore, by Lemma 3.6
(4), the quartic S4 can be written as the intersection of two quadratic hypersur-
faces in P4, i.e., S4 = Q21 ∩Q22 , where Q21 , and Q22 are linearly independent
irreducible quadratic hypersurfaces in P4. Since V4 contains no surface of degree
r, r ≤ 3, we have Q21 ∩ V4 = S4 ∪ S′4. Here S′4 is a non-degenerate irreducible
surface of degree 4 in P4; if a hyperplane Y in P4 contains the quartic S′4, then
S′4 ⊂ Y ∩ Q21 , and hence this yields a contradiction. Then, by the equation
(3.1), the quartic V4 should be defined by an equation of the form

h1z3 + q21b2 + q22d2 + e4 = 0,

where h1, z3, and e4 are homogeneous polynomials of degree 1, 3, and 4 in P4,
respectively, such that S4 ∪ S′4 ⊂ {z3 = 0}, and q2j , j = 1, 2, b2, and d2
are quadratic homogeneous polynomials in P4 such that Q2j is given by the
equation q2j = 0, and S′4 = Q21∩{d2 = 0}. Note that Q21∩V4 ⊆ Q21∩{h1z3 =
0}. However, since S4, and S′4 are irreducible, we have S4∪S′4 6⊂ Q21 ∩{h1z3 =
0}, and hence this yields a contradiction.

Finally, suppose that V4 contains no a surface of degree r, r ≤ 4, and a non-
degenerate irreducible sextic surface S6 is contained in V4. Then, by Lemma
3.6, the sextic S6 lives in some quadratic hypersurface Q2 in P4. Then we have
Q2 ∩ V4 = S6 ∪ T2, where T2 is a quadric surface, and hence the quartic V4
contains a plane in T2, or the irreducible quadric surface T2. This contradicts
our assumption.
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