SOME IRRATIONAL QUARTIC THREEFOLDS

Kyusik Hong and Joonyeong Won

Dedicated to the late Professor Bumsig Kim

Abstract

We study the factoriality of a nodal quartic hypersurface V_{4} in \mathbb{P}^{4} when there is a hyperplane in \mathbb{P}^{4} containing all the nodes of V_{4}. As an application, we obtain new examples of irrational quartic 3-folds.

All considered varieties are assumed to be projective, normal, and defined over the complex number field \mathbb{C}.

1. Introduction

A variety is called factorial if every Weil divisor on it is Cartier. This innocent definition is quite subtle when realized on a projective variety. It does depend both on the kind of singularities and on their position. Note that a smooth hypersurface in \mathbb{P}^{4} is always factorial. A hypersurface is called nodal if all its singular points are only ordinary double points, i.e., nodes. The factoriality problem of a nodal hypersurface in \mathbb{P}^{4} has been considered by several authors for a long time [3-6, 17, 22-24, 28].

We will restrict ourselves to the case where the degree of hypersurfaces in \mathbb{P}^{4} is 4 . Let $V_{4} \subset \mathbb{P}^{4}$ be a nodal quartic hypersurface. Then the GrothendieckLefschetz theorem [16, Chapter IV, Corollary 3.3] says that Cartier divisors on V_{4} are restrictions of Cartier divisors on \mathbb{P}^{4}, i.e., that Pic $V_{4} \cong \mathbb{Z}\left[\mathcal{O}_{V_{4}}(1)\right]$. However, no such result holds for $\mathrm{Cl} V_{4}$, where $\mathrm{Cl} V_{4}$ denotes the class group of V_{4}, namely the group of linear equivalence classes of Weil divisors. More precisely, since V_{4} is projectively normal and nonsingular in codimension 1 , the restriction map

$$
\mathrm{Cl} \mathbb{P}^{4} \longrightarrow \mathrm{Cl} V_{4}
$$

is an isomorphism precisely when $\mathrm{Cl} V_{4}=\operatorname{Pic} V_{4}=\mathbb{Z}$. In this case we say that V_{4} is factorial. In general, we have

$$
\mathrm{Cl} V_{4}=\operatorname{Pic} V_{4} \oplus \mathbb{Z}^{\delta},
$$

Received February 22, 2021; Accepted May 12, 2021.
2010 Mathematics Subject Classification. 14C20, 14J17, 14J30.
Key words and phrases. Nodal hypersurface, factoriality, irrationality.
where the number δ is the defect of V_{4}. From the equivalent condition (3) in Section 2, the defect is a global topological invariant that measures how far V_{4} is from being factorial, or, in other words, to what extent Poincaré duality fails on V_{4}. A lot of the birational geometry of singular varieties depends on the factoriality condition. For instance, Mella proved in [24] that every factorial nodal quartic 3 -fold is irrational. In particular, the rationality of a nodal determinantal quartic 3 -fold is due to the lack of factoriality and not to the presence of singularities [24].
Example 1.1 ([25]). Every general determinantal quartic 3-fold is nodal, nonfactorial, rational, and it has 20 nodes.

Results of [24] generalize a classical result by Iskovskikh and Manin [18] that all smooth quartic 3 -folds are irrational.

There exist non-factorial irrational nodal quartic 3 -folds in $\mathbb{P}^{4}[4$, Theorem 11].
Theorem 1.1. If $V_{4} \subset \mathbb{P}^{4}$ is a sufficiently general quartic 3 -fold that contains a smooth del Pezzo surface $S_{4} \subset \mathbb{P}^{4}$ of degree 4 , then V_{4} is nodal, non-factorial and irrational, and has \#|Sing $\left(V_{4}\right) \mid=16$.

For a given variety, it is one of the most essential questions to decide whether it is rational or not. This question has been considered in depth for smooth 3 -folds $[1,2,7,8,10,18,19,25-27,29]$. This is why it is important to study the factoriality of a nodal quartic hypersurface V_{4} in \mathbb{P}^{4}.

Remark 1.1. Every quadric 3 -fold in \mathbb{P}^{4} is rational. Clemens and Griffiths showed that a smooth cubic 3 -fold is irrational [10, Theorem 13.12]. Every nodal hypersurface in \mathbb{P}^{4} of degree at least 5 is irrational.

The following theorem is the main result in the paper [4] by Cheltsov.
Theorem 1.2. A nodal quartic V_{4} is factorial if it has at most 9 nodes and contains no planes.

Theorem 1.2 has been improved.
Theorem 1.3 ([28, Theorem 1.3]). A nodal quartic V_{4} is factorial if it has at most 11 nodes and contains no planes. If V_{4} has 12 nodes, then V_{4} is factorial with the exception of the case when V_{4} contains a quadric surface.
Theorem 1.4 ([17, Theorem 1.3]). A nodal quartic V_{4} is factorial if it has at most 13 nodes and contains neither planes nor quadric surfaces.

Examples 2.1, 2.2, 2.3, 3.1 and Lemmas 3.3, 3.4 enable us to propose the conjecture below.
Conjecture 1.1. A nodal quartic V_{4} is factorial if it has at most 16 nodes, does not contain any of planes, and quadric surfaces, and (possibly singular) del Pezzo surfaces of degree 4.

In this paper, we prove the following.
Theorem 1.5. Assume that there is a hyperplane in \mathbb{P}^{4} containing all the nodes of a nodal quartic V_{4}.
(1) If $\#\left|\operatorname{Sing}\left(V_{4}\right)\right|>20$, then V_{4} is not factorial;
(2) V_{4} is factorial if $\#\left|\operatorname{Sing}\left(V_{4}\right)\right| \leq 20$, and V_{4} contains neither planes nor quadric surfaces.

Corollary 1.1. A nodal quartic V_{4} is irrational if it has at most 20 nodes, contains neither planes nor quadric surfaces, and there is a hyperplane in \mathbb{P}^{4} containing all the nodes of V_{4}.

Corollary 1.2. Assume that there is a hyperplane in \mathbb{P}^{4} containing all the nodes of V_{4}. Then Conjecture 1.1 is true.

Proof. The statement immediately follows from Theorem 1.5.
Remark 1.2. A nodal quartic V_{4} cannot have more than 45 nodes $[15,30]$. Moreover, there is a unique nodal quartic 3 -fold with 45 nodes [12]. It is known as the Burkhardt quartic, which has too many nodes to be factorial. In fact, if V_{4} is factorial, then it must have at most 35 nodes because $h^{0}\left(\mathbb{P}^{4}, \mathcal{O}_{\mathbb{P}^{4}}(3)\right)=35$ (This immediately follows from the equivalent condition (4) in Section 2).

2. Preliminaries

Let V_{d} be a nodal hypersurface of degree d in \mathbb{P}^{4} given by the equation

$$
h(x, y, z, t, w)=0 \subset \mathbb{P}^{4} \cong \operatorname{Proj}(\mathbb{C}[x, y, z, t, w])
$$

where h is a homogeneous polynomial of degree d in \mathbb{P}^{4}. Then it is well-known that the following conditions are equivalent $[9,13,16]$:
(1) V_{d} is factorial;
(2) the quotient ring

$$
\mathbb{C}[x, y, z, t, w] /\langle h(x, y, z, t, w)\rangle
$$

is a unique factorization domain;
(3) $\operatorname{dim} H_{4}\left(V_{d}, \mathbb{Z}\right)=\operatorname{dim} H^{2}\left(V_{d}, \mathbb{Z}\right)$;
(4) the nodes of V_{d} impose independent linear conditions on homogeneous forms of degree $2 d-5$ in \mathbb{P}^{4} (global sections of $H^{0}\left(\mathcal{O}_{\mathbb{P}^{4}}(2 d-5)\right)$);
(5) any surface in V_{d} is the complete intersection of V_{d} with a hypersurface of \mathbb{P}^{4}.
From the equivalent condition (2), we present some non-factorial hypersurfaces in \mathbb{P}^{4}.

Example 2.1. Let V_{d} be a nodal hypersurface of degree $d>1$ in $\mathbb{P}^{4} \cong$ $\operatorname{Proj}(\mathbb{C}[x, y, z, t, w])$ given by the equation

$$
x f(x, y, z, t, w)+y g(x, y, z, t, w)=0
$$

where f and g are general homogeneous polynomials of degree $d-1$ in \mathbb{P}^{4}. Then V_{d} has exactly $(d-1)^{2}$ nodes and contains the plane π defined by $\{x=y=0\}$. Hence, by the condition (5), V_{d} is not factorial.

Example 2.2. Let V_{d} be a nodal hypersurface of degree $d>2$ in $\mathbb{P}^{4} \cong$ $\operatorname{Proj}(\mathbb{C}[x, y, z, t, w])$ given by the equation

$$
x f(x, y, z, t, w)+(y z+t w) g(x, y, z, t, w)=0
$$

where f and g are general homogeneous polynomials of degree $d-1$ and $d-2$ in \mathbb{P}^{4}, respectively. Then V_{d} has exactly $2(d-1)(d-2)$ nodes and contains the quadric surface U defined by $\{x=y z+t w=0\}$. Hence, by the condition (5), V_{d} is not factorial.

Now, we present a factorial nodal quartic hypersurface in \mathbb{P}^{4} which contains neither planes nor quadric surfaces. In particular, there is a hyperplane in \mathbb{P}^{4} containing all the nodes of this nodal quartic 3 -fold.

Example 2.3. Let S be a nodal quartic surface in \mathbb{P}^{3}. Then $\#|\operatorname{Sing}(S)| \leq 16$. Suppose that S is given by the equation

$$
f\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=0
$$

for some quartic homogeneous polynomial f. Here $x_{0}, x_{1}, x_{2}, x_{3}$ are coordinates on \mathbb{P}^{3}. Since we have $h^{0}\left(\mathbb{P}^{3}, \mathcal{O}_{\mathbb{P}^{3}}(3)\right)=20$, one can find a cubic homogeneous polynomial $h\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ that vanishes at every nodes of the surface S. Consider the quartic hypersurface in \mathbb{P}^{4} that is given by the equation $g\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right)=0$,

$$
g\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right):=x_{4} h\left(x_{0}, x_{1}, x_{2}, x_{3}\right)+\alpha f\left(x_{0}, x_{1}, x_{2}, x_{3}\right),
$$

where α is a general complex number, and $x_{0}, x_{1}, x_{2}, x_{3}, x_{4}$ are coordinates on \mathbb{P}^{4}. By Bertini theorem, this quartic 3-fold has exactly $s, s=\#|\operatorname{Sing}(S)|$, nodes, which we can identify with the nodes of the surface S contained in the hyperplane, $\left\{x_{4}=0\right\}$. Furthermore, one can show that this quartic 3 -fold is nodal. If we take a general element of the pencil, this nodal quartic contains neither planes nor quadric surfaces in \mathbb{P}^{3}. Then, by Theorem $1.5(2)$, this nodal quartic is factorial, and hence, by Corollary 1.1, this nodal quartic is irrational.

3. Useful tools

Let V_{d} be a nodal hypersurface of degree d in \mathbb{P}^{4}. From the equivalent condition (4) in Section 2, the factoriality of V_{d} is strongly related to the number and the position of its singularities. For instance, if V_{d} is factorial, then the number of nodes of V_{d} cannot exceed $h^{0}\left(\mathbb{P}^{4}, \mathcal{O}_{\mathbb{P}^{4}}(2 d-5)\right)$. Furthermore, we see that the nodes of V_{d} are located in \mathbb{P}^{4} with the following nice properties.

Lemma 3.1. Let V_{d} be a nodal hypersurface of degree d in \mathbb{P}^{4}.
(1) A curve of degree k contains at most $k(d-1)$ nodes of V_{d}.
(2) If a 2-plane contains $\frac{d(d-1)}{2}+1$ nodes of V_{d}, then the plane is contained in V_{d}.

Proof. See [6, Lemma 2.9].
Lemma 3.2. Let V_{d} be a nodal hypersurface of degree d in \mathbb{P}^{4}, let $\Xi_{d, i}=$ $\operatorname{Sing}\left(V_{d}\right) \cap \operatorname{Sing}\left(S_{i}\right)$, where S_{i} is an irreducible surface of degree i, and let $\#\left|\Xi_{d, i}\right|$ be the cardinality of $\Xi_{d, i}$. If S_{i} contains $\frac{i d(d-1)}{2}-2 \#\left|\Xi_{d, i}\right|+1$ nodes of V_{d}, then $S_{i} \subset V_{d}$.

Proof. Suppose that V_{d} is given by the equation

$$
h\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right)=0 \subset \mathbb{P}^{4} \cong \operatorname{Proj}\left(\mathbb{C}\left[x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right]\right),
$$

where h is a homogeneous polynomial of degree d in \mathbb{P}^{4}. Then the singular locus of V_{d} is contained in a general hypersurface $V_{d}^{\prime}=:\left\{\Sigma \alpha_{i} \frac{\partial h}{\partial x_{i}}=0\right\}$ of degree $d-$ 1 with $\alpha_{i} \in \mathbb{C}$. Because V_{d} has only isolated singularities, $S_{i} \cap V_{d}^{\prime}$ is a curve of degree $i(d-1)$. Assume that $S_{i} \not \subset V_{d}$. Then $S_{i} \cap V_{d}^{\prime} \not \subset V_{d}$. Note that the intersection number of the hypersurface V_{d} and the curve $S_{i} \cap V_{d}^{\prime}$ is $i d(d-1)$, and the curve $S_{i} \cap V_{d}^{\prime}$ is singular at the points of $\operatorname{Sing}\left(V_{d}\right) \cap \operatorname{Sing}\left(S_{i}\right)$. Therefore, $S_{i} \cap V_{d}^{\prime}$ cannot meet V_{d} at more than $\frac{i d(d-1)}{2}-2 \#\left|\Xi_{d, i}\right|$ points of $\operatorname{Sing}\left(V_{d}\right)$.

Also, the following theorem is an application of the modern Cayley-Bacharach theorem as stated in [14].

Theorem 3.1. Let Γ be a subset of a zero-dimensional complete intersection of hypersurfaces $X_{d_{1}}, X_{d_{2}}, \ldots, X_{d_{N}}$ of degree $d_{i} \geq 1$ in \mathbb{P}^{N}, and let $\#|\Gamma|$ be the cardinality of Γ. Then the points of Γ impose dependent linear conditions on homogeneous forms of degree $\Sigma_{i=1}^{N} d_{i}-N-1$ in \mathbb{P}^{N} if and only if the equality $\#|\Gamma|=\prod_{i=1}^{N} d_{i}$ holds.

Proof. See [23, Theorem 2.6].
Let V_{d} be a nodal hypersurface of degree d in \mathbb{P}^{4}. Recall that if the hypersurface V_{d} is factorial, then, for a surface $S_{r} \subset V_{d}$ of degree r, there is a hypersurface $F \subset \mathbb{P}^{4}$ such that S_{r} is a complete intersection of V_{d} and F, so that in particular the degree r of a surface S_{r} in V_{d} is a multiple of d. Thus, if a surface is contained in V_{d} and the surface is not a complete intersection of V_{d} with another hypersurface in \mathbb{P}^{4}, then V_{d} is not factorial. More precisely, for a nodal quartic hypersurface in \mathbb{P}^{4}, we have the following three results, i.e., Lemma 3.3, Example 3.1, and Lemma 3.4. The first result is that a nonfactorial nodal quartic hypersurface in \mathbb{P}^{4} contains a surface of degree $r, r \neq 4 k$ with $k \in \mathbb{N}$, in a hyperplane in \mathbb{P}^{4}, and, in the other two cases, a non-factorial nodal quartic hypersurface in \mathbb{P}^{4} contains a non-degenerate irreducible surface of degree $r, r=3,4$, in \mathbb{P}^{4} which is not the complete intersection of V_{4} with a hypersurface of \mathbb{P}^{4}.

Lemma 3.3. Let V_{4} be a nodal quartic hypersurface in \mathbb{P}^{4}. If V_{4} contains a surface S_{r} of degree $r, r=1,2$, in \mathbb{P}^{3}, then S_{r} contains at least $3 r(4-r)$ points of $\operatorname{Sing}\left(V_{4}\right)$, and V_{4} is not factorial.
Proof. Suppose that, for $r=1,2, V_{4}$ is given by the equation

$$
h_{1} f_{3}+u_{r} g_{4-r}=0 \subset \mathbb{P}^{4}
$$

where h_{1}, f_{3}, u_{r} and g_{4-r} are homogeneous polynomials of degree $1,3, r$ and $4-r$ in \mathbb{P}^{4}, respectively. Then V_{4} contains the surface, $S_{r}:=\left\{h_{1}=0\right\} \cap\left\{u_{r}=0\right\}$, in $\mathbb{P}^{3} \cong\left\{h_{1}=0\right\}$. Because V_{4} has only ordinary double points as singularities, for any point $s \in \operatorname{Sing}\left(V_{4}\right)$, four hypersurfaces $\left\{h_{1}=0\right\},\left\{f_{3}=0\right\}$, $\left\{u_{r}=0\right\}$ and $\left\{g_{4-r}=0\right\}$ meet transversally at the point s. Therefore, V_{4} has at least $3 r(4-r)$ nodes, and S_{r} contains at least $3 r(4-r)$ nodes of V_{4}. Let $\Lambda=$: $\left\{h_{1}=0\right\} \cap\left\{f_{3}=0\right\} \cap\left\{u_{r}=0\right\} \cap\left\{g_{4-r}=0\right\}$. Then $\Lambda \subseteq \operatorname{Sing}\left(V_{4}\right)$. Because Λ is a zero-dimensional complete intersection of four hypersurfaces of degree $1,3, r, 4-r$ in \mathbb{P}^{4}, the points of Λ impose dependent linear conditions on cubic forms on \mathbb{P}^{4} by Theorem 3.1. This implies that the points of $\operatorname{Sing}\left(V_{4}\right)$ impose dependent linear conditions on cubic forms on \mathbb{P}^{4}. Thus, V_{4} is not factorial by the equivalent condition (4) in Section 2.

Example 3.1. The Hirzebruch surface $\mathbb{F}_{1}=\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{1}}, \mathcal{O}_{\mathbb{P}^{1}}(1)\right)$ is isomorphic to the blow-up of \mathbb{P}^{2} along a point. Consider the blow-up of \mathbb{P}^{2} at one point p, giving exceptional divisor E. Then the intersection ring on \mathbb{P}^{2} is given by $\mathbb{Z}[H, E] / H^{2}=1, H E=0, E^{2}=-1$. We can understand divisors and sections of divisors in terms of divisors on \mathbb{P}^{2} with certain multiplicities in p. Let's consider the divisor class $2 H-E$. This corresponds to conics in \mathbb{P}^{2} through the point p, which gives a five-dimensional vector space. It separates points and tangent vectors. Therefore, we get an immersion of \mathbb{F}_{1} into \mathbb{P}^{4}. Also, its degree is $(2 H-E)(2 H-E)=3$, and hence we obtain a cubic surface in \mathbb{P}^{4}. More precisely, consider the smooth cubic surface S_{3} given parametrically as the image of the map

$$
\nu: \mathbb{P}^{2} \rightarrow \mathbb{P}^{4}
$$

which assigns to the homogeneous coordinate $[x: y: z]$ the value

$$
\nu:[x: y: z] \mapsto\left[x^{2}: y^{2}: x y: x z: y z\right] .
$$

Equivalently, the cubic S_{3} is a projective variety, defined as the zero locus of three irreducible quadratic hypersurfaces in \mathbb{P}^{4}. Given the homogeneous coordinates $[A: B: C: D: E]$ on \mathbb{P}^{4}, the cubic S_{3} is the zero locus of the three homogeneous polynomials

$$
A B-C^{2}=0, C E-B D=0, A E-C D=0
$$

Let V_{4} be a nodal quartic hypersurface in \mathbb{P}^{4} given by the equation

$$
\left(A B-C^{2}\right) f_{2}+(C E-B D) g_{2}+(A E-C D) h_{2}=0
$$

where f_{2}, g_{2}, and h_{2} are general homogeneous polynomials of degree 2 in \mathbb{P}^{4}. Then V_{4} has exactly seventeen nodes and contains the smooth cubic surface
$S_{3} \cong \mathbb{F}_{1}$, where \mathbb{F}_{1} is a rational normal scroll. Because the cubic S_{3} cannot be written as the complete intersection of V_{4} with another hypersurface in \mathbb{P}^{4}, the quartic V_{4} is not factorial.
Lemma 3.4. Let V_{4} be a nodal quartic hypersurface in \mathbb{P}^{4}. If V_{4} contains a complete intersection surface S_{4} of two quadratic hypersurfaces in \mathbb{P}^{4}, then S_{4} contains at least 16 points of $\operatorname{Sing}\left(V_{4}\right)$, and V_{4} is not factorial.
Proof. Assume that V_{4} is given by the equation

$$
h_{2} f_{2}+u_{2} g_{2}=0 \subset \mathbb{P}^{4},
$$

where h_{2}, f_{2}, u_{2} and g_{2} are quadratic homogeneous polynomials in \mathbb{P}^{4}. Then V_{4} contains the surface, $S_{4}:=\left\{h_{2}=0\right\} \cap\left\{u_{2}=0\right\}$. Because V_{4} has only ordinary double points as singularities, for any point $s \in \operatorname{Sing}\left(V_{4}\right)$, four hypersurfaces $\left\{h_{2}=0\right\},\left\{f_{2}=0\right\},\left\{u_{2}=0\right\}$ and $\left\{g_{2}=0\right\}$ meet transversally at the point s. Therefore, V_{4} has at least 16 nodes, and S_{4} contains at least 16 nodes of V_{4}. Let $\Sigma=:\left\{h_{2}=0\right\} \cap\left\{f_{2}=0\right\} \cap\left\{u_{2}=0\right\} \cap\left\{g_{2}=0\right\}$. Then $\Sigma \subseteq \operatorname{Sing}\left(V_{4}\right)$. Because Σ is a zero-dimensional complete intersection of four quadratic hypersurfaces in \mathbb{P}^{4}, the points of Σ impose dependent linear conditions on cubic forms on \mathbb{P}^{4} by Theorem 3.1. This implies that the points of $\operatorname{Sing}\left(V_{4}\right)$ impose dependent linear conditions on cubic forms on \mathbb{P}^{4}. Thus, V_{4} is not factorial by the equivalent condition (4) in Section 2.

Remark 3.1. Example 3.1 and Lemma 3.4 tell us that the statement of Lemma 3.2 is not sharp when a nodal quartic hypersurface in \mathbb{P}^{4} contains a nondegenerate surface in \mathbb{P}^{4}.

To prove the factoriality of a nodal quartic hypersurface in \mathbb{P}^{4} with at least 14 nodes, the following two lemmas are very helpful.
Lemma 3.5. Let V_{4} be a nodal quartic hypersurface in \mathbb{P}^{4} with

$$
14 \leq \#\left|\operatorname{Sing}\left(V_{4}\right)\right| \leq 20
$$

Suppose that there is a hyperplane in \mathbb{P}^{4} containing all the nodes of V_{4}, and the quartic V_{4} contains a non-degenerate irreducible surface S_{k} of degree k such that $S_{k} \neq V_{4} \cap F$, where F is a hypersurface in \mathbb{P}^{4}. Then one of the following holds;
(1) V_{4} contains a plane;
(2) V_{4} contains a quadric surface;
(3) there is a cubic hypersurface in \mathbb{P}^{4} containing the surface S_{k}.

Proof. From the statements (1), and (2), we assume that the quartic V_{4} does not contain planes and quadrics. Note that, by our assumption, the quartic V_{4} is not factorial. Suppose that V_{4} is given by the equation

$$
f_{4}\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right)=0 \subset \mathbb{P}^{4} \cong \operatorname{Proj}\left(\mathbb{C}\left[x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right]\right)
$$

where f_{4} is a homogeneous polynomial of degree 4 in \mathbb{P}^{4}. Then, assume that there is a unique hyperplane, say H_{1}, in \mathbb{P}^{4} containing all the nodes of V_{4};
otherwise, if there is a hyperplane, say H_{2}, in \mathbb{P}^{4} that is different from H_{1} and contains all the nodes of V_{4}, then, by Lemma $3.1(2)$ and $\#\left|\operatorname{Sing}\left(V_{4}\right)\right| \geq 14$, the quartic V_{4} must contain the plane, $H_{1} \cap H_{2}$. Since $h^{0}\left(\mathbb{P}^{4}, \mathcal{O}_{\mathbb{P}^{4}}(3)\right)=35$, and $\#\left|\operatorname{Sing}\left(V_{4}\right)\right| \leq 20$, there is an irreducible cubic hypersurface, say Z_{3}, in \mathbb{P}^{4} containing all the nodes of V_{4}. Now, let $\widetilde{f}_{4}:=h_{1} z_{3}+f_{4}$, where h_{1}, and z_{3} are homogeneous polynomials of degree 1 , and 3 in \mathbb{P}^{4}, respectively, such that H_{1} is defined by the equation $h_{1}=0$, and Z_{3} is defined by the equation $z_{3}=0$, and let $\widetilde{V_{4}}$ be defined by the equation $\widetilde{f}_{4}\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right)=0$. Here \widetilde{f}_{4} is general in the pencil. Then, V_{4}, and $\widetilde{V_{4}}$ have the same nodes, i.e., $\operatorname{Sing}\left(V_{4}\right)=\operatorname{Sing}\left(\widetilde{V_{4}}\right)$. This implies that V_{4}, and $\widetilde{V_{4}}$ are not factorial at the same time, and then we claim that the cubic Z_{3} contains the surface S_{k}, i.e., $V_{4}\left(\widetilde{V_{4}}\right.$, respectively) contains the surface S_{k} of degree k such that S_{k} is not the complete intersection of $V_{4}\left(\widetilde{V_{4}}\right.$, respectively) with a hypersurface of \mathbb{P}^{4}; by the equation $h_{1} z_{3}+\alpha f_{4}=0, \alpha \in \mathbb{C}$, we have at least 1-dimensional family, say \mathcal{F}_{4}, of nodal quartic hypersurfaces in \mathbb{P}^{4} such that an element of \mathcal{F}_{4} has the same nodes as the quartic V_{4}, and it is defined by the equation of the form $h_{1} z_{3}+\alpha f_{4}=0, \alpha \in \mathbb{C}$. Let $F_{4} \in \mathcal{F}_{4}$. Then we have $\operatorname{rank} \operatorname{Pic}\left(F_{4}\right)=\operatorname{rank} \operatorname{Pic}\left(V_{4}\right)=1$. By the statements (1), and (2), we assume that F_{4} and V_{4} contain neither 2-planes nor quadric surfaces, and then, by [20, Theorem 1.1] and [21, Remark 11], we have $\operatorname{rank} \mathrm{Cl}\left(F_{4}\right) \leq 6$ (rank $\mathrm{Cl}\left(V_{4}\right) \leq 6$, respectively), where $\mathrm{Cl}\left(F_{4}\right)\left(\mathrm{Cl}\left(V_{4}\right)\right.$, respectively) is the group of Weil divisors on F_{4} (V_{4}, respectively). Moreover, by [21, Remark 9], the degree of generators of $\mathrm{Cl}\left(F_{4}\right) / \operatorname{Pic}\left(F_{4}\right)\left(\mathrm{Cl}\left(V_{4}\right) / \operatorname{Pic}\left(V_{4}\right)\right.$, respectively) is at most 10. Suppose that the quartic V_{4} contains surfaces, $\left\{S_{d_{1}}, \ldots, S_{d_{r}}\right\}, r \leq 5$, of degree $d_{i} \leq 10$ such that each surface $S_{d_{i}}$ is not hypersurface section, and $S_{d_{i}}$ is a non-degenerate irreducible surface. Then, since $\operatorname{rank} \mathrm{Cl}\left(V_{4}\right)=\operatorname{rank} \mathrm{Cl}\left(F_{4}\right)$, and $\operatorname{dim} \mathcal{F}_{4} \geq 1$, we assume that F_{4} contains surfaces, $\left\{W_{d_{1}}, \ldots, W_{d_{r}}\right\}, r \leq 5$, of degree $d_{i} \leq 10$ such that each surface $W_{d_{i}}$ is not hypersurface section, and $W_{d_{i}}$ is a non-degenerate irreducible surface of degree d_{i}, i.e., $\operatorname{deg}\left(S_{d_{i}}\right)=$ $\operatorname{deg}\left(W_{d_{i}}\right)$. Now, suppose that $S_{d_{i}} \neq W_{d_{i}}$, i.e., $W_{d_{i}} \not \subset V_{4}$. Then, by the equation $h_{1} z_{3}+\alpha f_{4}=0, \alpha \in \mathbb{C}$, we have $H_{1} \cap W_{d_{i}} \subset H_{1} \cap F_{4}=H_{1} \cap V_{4}$, and hence the space curve $C_{d_{i}}:=W_{d_{i}} \cap H_{1}$ is contained in the quartic V_{4}. However, by our assumption, $W_{d_{i}}$ is not contained in the quartic surface, $H_{1} \cap V_{4}$, and hence we have $C_{d_{i}}=\left(W_{d_{i}} \cap H_{1}\right) \cap V_{4} \neq W_{d_{i}} \cap\left(H_{1} \cap V_{4}\right)=E_{4 d_{i}}$, where $C_{d_{i}}\left(E_{4 d_{i}}\right.$, respectively) is a curve of degree $d_{i}\left(4 d_{i}\right.$, respectively). This yields a contradiction.

Remark 3.2. In the proof of Lemma 3.5, since the quartic V_{4} is not factorial, by the equivalent condition (4) in Section 2, and \#| Sing $\left(V_{4}\right) \mid \leq 20$, the dimension of the system, $\left|\mathcal{O}_{\mathbb{P}^{4}}(3)-\operatorname{Sing}\left(V_{4}\right)\right|$, is at least 16 , and hence we see that there is at least 16 -dimensional family of cubic hypersurfaces in \mathbb{P}^{4} containing the surface S_{k}.

Lemma 3.6. Let V_{4} be a nodal quartic hypersurface in \mathbb{P}^{4} with

$$
14 \leq \#\left|\operatorname{Sing}\left(V_{4}\right)\right| \leq 20
$$

Suppose that there is a hyperplane in \mathbb{P}^{4} containing all the nodes of V_{4}, and the quartic V_{4} contains a non-degenerate irreducible surface S_{k} of degree k such that $S_{k} \neq V_{4} \cap F$, where F is a hypersurface in \mathbb{P}^{4}. Then one of the following holds;
(1) V_{4} contains a plane;
(2) V_{4} contains a quadric surface;
(3) $k=3$, and S_{3} is a 2 -fold rational normal scroll in \mathbb{P}^{4};
(4) $k=4$, and S_{4} is a (possibly singular) del Pezzo surface of degree 4;
(5) $k=6$, and S_{6} is the complete intersection of an irreducible cubic hypersurface and an irreducible quadratic hypersurface in \mathbb{P}^{4}.

Proof. By the statement (1), we assume that the quartic V_{4} contains no planes. Then there is a unique hyperplane H_{1} in \mathbb{P}^{4} containing all the nodes of V_{4}. Also, by Lemma 3.5, we assume that there is a cubic hypersurface Z_{3} in \mathbb{P}^{4} containing the surface S_{k}. Note that $S_{k}, k \leq 10$, is a non-degenerate surface. Then, by Remark 3.2, we divide into two cases.

Suppose that $S_{k}=V_{4} \cap Z_{3} \cap A_{n}$, where A_{n} is a hypersurface of degree n, $n=2$ or $n=3$, in \mathbb{P}^{4}. Then the nodal quartic V_{4} is defined by an equation of the form $h_{1} z_{3}+a_{n} b_{4-n}=0$, where H_{1} is defined by the equation $h_{1}=0$, and Z_{3} is defined by the equation $z_{3}=0$, and A_{n} is defined by the equation $a_{n}=0$, and b_{4-n} is a homogeneous polynomial of degree $4-n$ in \mathbb{P}^{4} such that the intersection points of $\left\{h_{1}=0\right\},\left\{z_{3}=0\right\},\left\{a_{n}=0\right\}$, and $\left\{b_{4-n}=0\right\}$ are singular points of V_{4}. In this case, the quartic V_{4} contains the plane, $\left\{h_{1}=0\right\} \cap\left\{b_{1}=0\right\}$, or the quadric surface, $\left\{h_{1}=0\right\} \cap\left\{b_{2}=0\right\}$.

Now, suppose that $S_{k}=V_{4} \cap Z_{3} \cap A_{n} \cap C_{m}$, where C_{m} is a hypersurface of degree $m, m=2$ or $m=3$, in \mathbb{P}^{4}; otherwise, if the surface S_{k} is the intersection of V_{4} with four or more hypersurfaces of \mathbb{P}^{4}, then one can prove in the same way. Then the nodal quartic V_{4} is defined by an equation of the form $h_{1} z_{3}+a_{n} b_{4-n}+c_{m} d_{4-m}+e_{4}=0$, where C_{m} is defined by the equation $c_{m}=0$, and d_{4-m} is a homogeneous polynomial of degree $4-m$ in \mathbb{P}^{4} such that $S_{k} \subset\left\{h_{1} z_{3}=0\right\} \cap\left\{a_{n} b_{4-n}=0\right\} \cap\left\{c_{m} d_{4-m}=0\right\}$, and $\operatorname{Sing}\left(V_{4}\right) \subset\left\{h_{1} z_{3}=\right.$ $0\} \cap\left\{a_{n} b_{4-n}=0\right\} \cap\left\{c_{m} d_{4-m}=0\right\}$, and e_{4} is a quartic homogeneous polynomial in \mathbb{P}^{4} such that $S_{k} \subset\left\{e_{4}=0\right\}$, and $\operatorname{Sing}\left(V_{4}\right)=\operatorname{Sing}\left(\left\{e_{4}=0\right\}\right)$. The existence of the equation, $e_{4}=0$, follows from the proof of Lemma 3.5. Then, for the value n, we divide into two subcases.

If $n=3$, then, assume that V_{4} contains no planes; otherwise, the quartic V_{4} contains the plane, $H_{1} \cap B_{1}$, where the hyperplane B_{1} in \mathbb{P}^{4} is defined by the equation $b_{1}=0$. Then, by Lemma $3.1(2)$ and $\#\left|\operatorname{Sing}\left(V_{4}\right)\right| \geq 14$, we have $\#\left|\left(\operatorname{Sing}\left(V_{4}\right) \cap \operatorname{Sing}\left(A_{3}\right)\right) \backslash B_{1}\right| \geq 8$. Since $H_{1} \cap \operatorname{Sing}\left(A_{3}\right) \subset \operatorname{Sing}\left(H_{1} \cap A_{3}\right)$, we have $\#\left|\operatorname{Sing}\left(V_{4}\right) \cap \operatorname{Sing}\left(H_{1} \cap A_{3}\right)\right| \geq 8$. Also, since a nodal cubic surface has at most 4 nodes, the cubic surface, $H_{1} \cap A_{3}$, must be reducible. In this case, we divide into two subcases. Suppose that $H_{1} \cap A_{3}=\pi \cup S_{2}$, where π is a plane, and S_{2} is an irreducible quadric surface. Then, since, by Lemma $3.1(1)$, a conic curve passes through at most 6 nodes of V_{4}, and S_{2} has at most
one node, we have $\#\left|\operatorname{Sing}\left(V_{4}\right) \cap \operatorname{Sing}\left(H_{1} \cap A_{3}\right)\right| \leq 7$, and hence this yields a contradiction. Now, suppose that $H_{1} \cap A_{3}=\pi \cup \hat{\pi} \cup \bar{\pi}$, where $\pi, \hat{\pi}$, and $\bar{\pi}$ are planes. Note that $\operatorname{Sing}\left(V_{4}\right) \subset H_{1} \cap A_{3}$. Then, by $\#\left|\operatorname{Sing}\left(V_{4}\right)\right| \geq 14$, we assume that $\pi \neq \hat{\pi} \neq \bar{\pi}$; otherwise, the quartic V_{4} contains a plane in $H_{1} \cap A_{3}$. Then, since $\#\left|\operatorname{Sing}\left(V_{4}\right) \cap \operatorname{Sing}\left(H_{1} \cap A_{3}\right)\right| \geq 8$, and $\operatorname{Sing}\left(V_{4}\right) \subset H_{1} \cap A_{3}$, by Lemma 3.1, the quartic V_{4} must contain a plane in $H_{1} \cap A_{3}$.

If $n=2$, then, we assume that Z_{3} is an irreducible cubic; otherwise, we obtain the statements (3), and (4). Moreover, we assume that $Z_{3} \cap A_{2}$ is irreducible; otherwise, we obtain the statements (1), (2), and (3). Then, we get the statement (5), or the quartic V_{4} contains the quadric surface, $H_{1} \cap B_{2}$, in $\mathbb{P}^{3} \cong H_{1}$, where the quadric B_{2} is defined by the equation $b_{2}=0$. As before, if $m=3$, then the quartic V_{4} must contain a plane. Thus, we assume that $m=2$. Then $n=m=2$, and hence the nodal quartic V_{4} is defined by an equation of the form

$$
\begin{equation*}
h_{1} z_{3}+a_{2} b_{2}+c_{2} d_{2}+e_{4}=0 \tag{3.1}
\end{equation*}
$$

where $h_{1}, z_{3}, a_{2}, b_{2}, c_{2}, d_{2}$ and e_{4} are homogeneous polynomials of degree 1,3 , $2,2,2,2$ and 4 in \mathbb{P}^{4}, respectively, such that $S_{k} \subset\left\{h_{1} z_{3}=0\right\} \cap\left\{a_{2} b_{2}=\right.$ $0\} \cap\left\{c_{2} d_{2}=0\right\}$. Since S_{k} is a non-degenerate surface, and it is contained in the intersection of two quadratic hypersurfaces in \mathbb{P}^{4}. Therefore, the surface S_{k} is a 2-fold rational normal scroll in \mathbb{P}^{4} (in this case, $Z_{3}=H \cup Q$, where H is a hyperplane in \mathbb{P}^{4}, and Q is an irreducible quadratic hypersurface in \mathbb{P}^{4}), or the surface S_{k} is a del Pezzo surface of degree 4.

4. Proof of Theorem 1.5

By our assumption, there is a hyperplane in \mathbb{P}^{4} containing all the nodes of a nodal quartic hypersurface V_{4} in \mathbb{P}^{4}. Therefore, if V_{4} is factorial, then, by the equivalent condition (4) in Section 2, it must have at most 20 nodes because $h^{0}\left(\mathbb{P}^{3}, \mathcal{O}_{\mathbb{P}^{3}}(3)\right)=20$.

Recall that a nodal quartic hypersurface V_{4} in \mathbb{P}^{4} is factorial if any surface in V_{4} is the complete intersection of V_{4} with a hypersurface of \mathbb{P}^{4}. By Theorem 1.3 in [17], we assume that $14 \leq \#\left|\operatorname{Sing}\left(V_{4}\right)\right| \leq 20$. Also, by our assumption and Lemma 3.6, the quartic V_{4} is factorial if it does not contain any of cubic surfaces, and non-degenerate quartic surfaces, and non-degenerate irreducible sextic surfaces. From now on, we will prove that the quartic V_{4} does not contain any of cubic surfaces in \mathbb{P}^{4}, and non-degenerate quartic surfaces in \mathbb{P}^{4}, and non-degenerate irreducible sextic surfaces in \mathbb{P}^{4}.

At first, suppose that V_{4} contains no a surface of degree $r, r \leq 2$, and a cubic surface S_{3} is contained in V_{4}. Then we have $S_{3} \not \subset \mathbb{P}^{3}$; otherwise, one can find a hyperplane H_{1} in \mathbb{P}^{4} containing S_{3}, and hence, the quartic V_{4} must contain the plane, $\overline{\left(V_{4} \cap H_{1}\right) \backslash S_{3}}$, and this contradicts our assumption. Also, we assume that S_{3} is irreducible; otherwise, the quartic V_{4} contains a plane in S_{3}. Then the cubic S_{3} is a variety of minimal degree. Since $S_{3} \subset \mathbb{P}^{4}$, by [11, Theorem 1], the cubic S_{3} is a 2 -fold rational normal scroll and hence, the
cubic S_{3} can be written as the intersection of three quadratic hypersurfaces in \mathbb{P}^{4}, i.e., $S_{3}=Q_{2_{1}} \cap Q_{2_{2}} \cap Q_{2_{3}}$, where $Q_{2_{1}}, Q_{2_{2}}$, and $Q_{2_{3}}$ are linearly independent irreducible quadratic hypersurfaces in \mathbb{P}^{4}. Then we have $Q_{2_{1}} \cap V_{4}=S_{3} \cup T_{5}$, where T_{5} is a quintic surface. By Lemma 3.6, the quintic T_{5} must be reducible. Then, the quartic V_{4} contains a plane in T_{5}, or an irreducible quadric surface in T_{5}, and hence this contradicts our assumption.

From now, suppose that V_{4} contains no a surface of degree $r, r \leq 3$, and a non-degenerate quartic surface S_{4} is contained in V_{4}. Then, we assume that S_{4} is irreducible; otherwise, V_{4} contains a plane in S_{4}, or an irreducible quadric surface in S_{4}, and hence this contradicts our assumption. Then, S_{4} is a nondegenerate irreducible surface of degree 4 in \mathbb{P}^{4}. Furthermore, by Lemma 3.6 (4), the quartic S_{4} can be written as the intersection of two quadratic hypersurfaces in \mathbb{P}^{4}, i.e., $S_{4}=Q_{2_{1}} \cap Q_{2_{2}}$, where $Q_{2_{1}}$, and $Q_{2_{2}}$ are linearly independent irreducible quadratic hypersurfaces in \mathbb{P}^{4}. Since V_{4} contains no surface of degree $r, r \leq 3$, we have $Q_{2_{1}} \cap V_{4}=S_{4} \cup S_{4}^{\prime}$. Here S_{4}^{\prime} is a non-degenerate irreducible surface of degree 4 in \mathbb{P}^{4}; if a hyperplane Y in \mathbb{P}^{4} contains the quartic S_{4}^{\prime}, then $S_{4}^{\prime} \subset Y \cap Q_{2_{1}}$, and hence this yields a contradiction. Then, by the equation (3.1), the quartic V_{4} should be defined by an equation of the form

$$
h_{1} z_{3}+q_{2_{1}} b_{2}+q_{2_{2}} d_{2}+e_{4}=0
$$

where h_{1}, z_{3}, and e_{4} are homogeneous polynomials of degree 1,3 , and 4 in \mathbb{P}^{4}, respectively, such that $S_{4} \cup S_{4}^{\prime} \subset\left\{z_{3}=0\right\}$, and $q_{2_{j}}, j=1,2, b_{2}$, and d_{2} are quadratic homogeneous polynomials in \mathbb{P}^{4} such that $Q_{2_{j}}$ is given by the equation $q_{2_{j}}=0$, and $S_{4}^{\prime}=Q_{2_{1}} \cap\left\{d_{2}=0\right\}$. Note that $Q_{2_{1}} \cap V_{4} \subseteq Q_{2_{1}} \cap\left\{h_{1} z_{3}=\right.$ $0\}$. However, since S_{4}, and S_{4}^{\prime} are irreducible, we have $S_{4} \cup S_{4}^{\prime} \not \subset Q_{2_{1}} \cap\left\{h_{1} z_{3}=\right.$ $0\}$, and hence this yields a contradiction.

Finally, suppose that V_{4} contains no a surface of degree $r, r \leq 4$, and a nondegenerate irreducible sextic surface S_{6} is contained in V_{4}. Then, by Lemma 3.6 , the sextic S_{6} lives in some quadratic hypersurface Q_{2} in \mathbb{P}^{4}. Then we have $Q_{2} \cap V_{4}=S_{6} \cup T_{2}$, where T_{2} is a quadric surface, and hence the quartic V_{4} contains a plane in T_{2}, or the irreducible quadric surface T_{2}. This contradicts our assumption.
Acknowledgments. The first author was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2021R1F1A1059506) and the Open KIAS Center at Korea Institute for Advanced Study. The second author was supported by the National Research Foundation of Korea(NRF-2020R1A2C1A01008018) and a KIAS Individual Grant (SP037003) via the Center for Mathematical Challenges at Korea Institute for Advanced Study. This research was supported by the Research Grant of Jeonju University in 2021.

References

[1] V. A. Alekseev, On conditions for the rationality of three-folds with a pencil of del Pezzo surfaces of degree 4, Mat. Zametki 41 (1987), no. 5, 724-730, 766.
[2] A. Beauville, Variétés de Prym et jacobiennes intermédiaires, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 3, 309-391.
[3] I. Cheltsov, On factoriality of nodal threefolds, J. Algebraic Geom. 14 (2005), no. 4, 663-690. https://doi.org/10.1090/S1056-3911-05-00405-4
[4] I. Cheltsov, Nonrational nodal quartic threefolds, Pacific J. Math. 226 (2006), no. 1, 65-81. https://doi.org/10.2140/pjm.2006.226.65
[5] I. Cheltsov, Factorial threefold hypersurfaces, J. Algebraic Geom. 19 (2010), no. 4, 781791. https://doi.org/10.1090/S1056-3911-09-00522-0
[6] I. Cheltsov and J. Park, Factorial hypersurfaces in \mathbb{P}^{4} with nodes, Geom. Dedicata 121 (2006), 205-219. https://doi.org/10.1007/s10711-006-9099-3
[7] A. Corti, Factoring birational maps of threefolds after Sarkisov, J. Algebraic Geom. 4 (1995), no. 2, 223-254.
[8] A. Corti, Singularities of linear systems and 3-fold birational geometry, in Explicit birational geometry of 3-folds, 259-312, London Math. Soc. Lecture Note Ser., 281, Cambridge Univ. Press, Cambridge, 2000.
[9] S. Cynk, Defect of a nodal hypersurface, Manuscripta Math. 104 (2001), no. 3, 325-331. https://doi.org/10.1007/s002290170030
[10] C. H. Clemens and P. A. Griffiths, The intermediate Jacobian of the cubic threefold, Ann. of Math. (2) 95 (1972), 281-356. https://doi.org/10.2307/1970801
[11] D. Eisenbud and J. Harris, On Varieties of minimal degree, Proceedings of Symposia in Pure Math. 46, 1987.
[12] A. J. de Jong, N. I. Shepherd-Barron, and A. Van de Ven, On the Burkhardt quartic, Math. Ann. 286 (1990), no. 1-3, 309-328. https://doi.org/10.1007/BF01453578
[13] A. Dimca, Betti numbers of hypersurfaces and defects of linear systems, Duke Math. J. 60 (1990), no. 1, 285-298. https://doi.org/10.1215/S0012-7094-90-06010-7
[14] D. Eisenbud, M. Green, and J. Harris, Higher Castelnuovo theory, Astérisque No. 218 (1993), 187-202.
[15] R. Friedman, Simultaneous resolution of threefold double points, Math. Ann. 274 (1986), no. 4, 671-689. https://doi.org/10.1007/BF01458602
[16] R. Hartshorne, Ample subvarieties of algebraic varieties, Lecture Notes in Mathematics, Vol. 156, Springer-Verlag, Berlin, 1970.
[17] K. Hong, Nonrationality of nodal quartic threefolds, Pacific J. Math. 266 (2013), no. 1, 31-42. https://doi.org/10.2140/pjm.2013.266.31
[18] V. A. Iskovskih and Ju. I. Manin, Three-dimensional quartics and counterexamples to the Lüroth problem, Mat. Sb. (N.S.) 86(128) (1971), 140-166.
[19] V. A. Iskovskikh and Yu. G. Prokhorov, Fano varieties, in Algebraic geometry, V, 1-247, Encyclopaedia Math. Sci., 47, Springer, Berlin, 1999.
[20] A.-S. Kaloghiros, The defect of Fano 3-folds, J. Algebraic Geom. 20 (2011), no. 1, 127-149. https://doi.org/10.1090/S1056-3911-09-00531-1
[21] A.-S. Kaloghiros, A classification of terminal quartic 3-folds and applications to rationality questions, Math. Ann. 354 (2012), no. 1, 263-296. https://doi.org/10.1007/ s00208-011-0658-z
[22] R. Kloosterman, Maximal families of nodal varieties with defect, arXiv:1310.0227v4
[23] D. Kosta, Factoriality condition of some nodal threefolds in \mathbb{P}^{4}, Manuscripta Math. 127 (2008), no. 2, 151-166. https://doi.org/10.1007/s00229-008-0197-4
[24] M. Mella, Birational geometry of quartic 3-folds. II. The importance of being \mathbb{Q}-factorial, Math. Ann. 330 (2004), no. 1, 107-126. https://doi.org/10.1007/s00208-004-0542-1
[25] A. V. Pukhlikov, Birational automorphisms of three-dimensional algebraic varieties with a pencil of del Pezzo surfaces, Izv. Math. 62 (1998), no. 1, 115-155; translated from Izv. Ross. Akad. Nauk Ser. Mat. 62 (1998), no. 1, 123-164. https://doi.org/10.1070/ im1998v062n01ABEH000188
[26] V. G. Sarkisov, Birational automorphisms of conic bundles, Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), no. 4, 918-945, 974.
[27] V. V. Shokurov, Prym varieties: theory and applications, Izv. Akad. Nauk SSSR Ser. Mat. 47 (1983), no. 4, 785-855.
[28] K. A. Shramov, \mathbb{Q}-factorial quartic threefolds, Sb. Math. 198 (2007), no. 7-8, 11651174; translated from Mat. Sb. 198 (2007), no. 8, 103-114. https://doi.org/10.1070/ SM2007v198n08ABEH003878
[29] A. N. Tyurin, The middle Jacobian of three-dimensional varieties, J. Soviet Math. 13 (1980), 707-745.
[30] A. N. Varchenko, Semicontinuity of the spectrum and an upper bound for the number of singular points of the projective hypersurface, Dokl. Akad. Nauk SSSR 270 (1983), no. 6, 1294-1297.

Kyusik Hong
Department of Mathematics Education
Jeonju University
Jeonju 55069, Korea
Email address: kszooj@jj.ac.kr
Joonyeong Won
Department of Mathematics
Ewha Womans University
Seoul 03760, Korea
Email address: leonwon@ewha.ac.kr

