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VARIOUS SHADOWING PROPERTIES

FOR TIME VARYING MAPS

Javad Nazarian Sarkooh

Abstract. This paper is concerned with the study of various notions

of shadowing of dynamical systems induced by a sequence of maps, so-
called time varying maps, on a metric space. We define and study the

shadowing, h-shadowing, limit shadowing, s-limit shadowing and expo-
nential limit shadowing properties of these dynamical systems. We show

that h-shadowing, limit shadowing and s-limit shadowing properties are

conjugacy invariant. Also, we investigate the relationships between these
notions of shadowing for time varying maps and examine the role that ex-

pansivity plays in shadowing properties of such dynamical systems. Spe-

cially, we prove some results linking s-limit shadowing property to limit
shadowing property, and h-shadowing property to s-limit shadowing and

limit shadowing properties. Moreover, under the assumption of expansiv-

ity, we show that the shadowing property implies the h-shadowing, s-limit
shadowing and limit shadowing properties. Finally, it is proved that the

uniformly contracting and uniformly expanding time varying maps ex-

hibit the shadowing, limit shadowing, s-limit shadowing and exponential
limit shadowing properties.

1. Introduction

The time varying maps (so-called non-autonomous or time-dependent dy-
namical systems), describe situations where the dynamics can vary with time
and yield very flexible models than autonomous cases for the study and de-
scription of real world processes. They may be used to describe the evolution
of a wider class of phenomena, including systems which are forced or driven.
For example, any moving picture on a television screen is an example of time
varying dynamical systems. In the recent past, lots of studies have been done
regarding dynamical properties in such systems, but a global theory is still out
of reach. Kolyada et al. [18, 19] gave definition of topological entropy of time
varying maps and discussed minimality of these systems. Also, ω-limit sets
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and attraction of time varying maps were studied in [4,16,22]. Then, stability
of time varying maps were investigated [2, 20]. Thakkar and Das [30] studied
expansiveness, shadowing and topological stability of time varying maps. In
[10, 12–15, 24], authors studied topological entropy, topological pressure and
thermodynamic properties of time varying maps. Weak mixing and chaos of
time varying maps were also studied by [5, 25, 29, 31]. Ott et al. [26] studied
the evolution of probability distributions and exponential loss of memory for
certain time-dependent dynamical systems.

In general time varying maps can be rather complicated. Thus, we are
inclined to look at approximations of orbits, also called pseudo orbits. Systems
for which pseudo orbits can be approximated by true orbits are said to satisfy
the shadowing property. The shadowing property plays a key role in the study
of the stability of dynamical systems. This property is found in hyperbolic
dynamics, and it was used to prove their stability, see for example [21]. In
this literature, some remarkable results were further obtained through works
of several authors, see e.g. [1, 3, 6, 9, 11,17,28].

Since the approximation by true orbits can be expressed in various ways,
different notions of shadowing have been introduced. In this paper, what we
want to study on time varying maps is shadowing, h-shadowing, limit shadow-
ing, s-limit shadowing and exponential limit shadowing properties.

This paper is organized as follows. In Section 2, we give a precise definition
of a time varying map, review the main concepts and set up our notation. In
this section, shadowing, h-shadowing, limit shadowing, s-limit shadowing and
exponential limit shadowing properties for time varying maps are considered.
Then, we study the basic properties of these notions of shadowing in Section 3.
Especially, we show that the h-shadowing, limit shadowing and s-limit shad-
owing properties are conjugacy invariant. Also, by considering these notions of
shadowing, we extend earlier results from other papers and identify some subtle
changes to the theory in this case. In Section 4, we investigate the relation-
ships between these notions of shadowing for time varying maps and examine
the role that expansivity plays in shadowing properties of such dynamical sys-
tems. Specially, we prove some results linking s-limit shadowing property to
limit shadowing property, and h-shadowing property to s-limit shadowing and
limit shadowing properties. Moreover, under the assumption of expansivity,
we show that the shadowing property implies the h-shadowing, s-limit shad-
owing and limit shadowing properties. Finally, in Section 5, we prove that the
uniformly expanding and uniformly contracting time varying maps exhibit the
shadowing, limit shadowing, s-limit shadowing and exponential limit shadow-
ing properties. Also, we show that any time varying map of a finite set of
hyperbolic linear homeomorphisms on a Banach space with the same stable
and unstable subspaces has the shadowing, limit shadowing, s-limit shadowing
and exponential limit shadowing properties.
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2. Preliminaries

Throughout this paper we consider (X, d) to be a metric space, fn : X → X,
n ∈ N, to be a sequence of continuous maps and F = {fn}n∈N to be a time
varying map on X that its time evolution is defined by composing the maps fn
in the following way

(1) Fn := fn ◦ fn−1 ◦ · · · ◦ f1 for n ≥ 1, and F0 := IdX .

For time varying map F = {fn}n∈N defined on X, we set F[i,j] := fj ◦fj−1 ◦
· · · ◦ fi+1 ◦ fi for 1 ≤ i ≤ j, and F[i,j] := IdX for i > j. Also, for any k > 0, we

define a time varying map (kth-iterate of F) Fk = {gn}n∈N on X, where

(2) gn = fnk ◦ f(n−1)k+k−1 ◦ · · · ◦ f(n−1)k+2 ◦ f(n−1)k+1 for n ≥ 1.

Thus Fk = {F[(n−1)k+1,nk]}n∈N. Moreover, if time varying map F shifted
k-times (k ≥ 1), then we denote it by F(k, shift), i.e., F(k, shift) = {fn}∞n=k+1.

Let F = {fn}n∈N be a time varying map on a metric space (X, d). For a point
x0 ∈ X, put xn := Fn(x0) for all n ≥ 0. Then the sequence {xn}n≥0, denoted
by O(x0), is said to be the orbit of x0 under time varying map F = {fn}n∈N.
Moreover, a subset Y of X is said to be invariant under F if fn(Y ) = Y for
all n ≥ 1, equivalently Fn(Y ) = Y for all n ≥ 0.

Definition 2.1 (Conjugacy). Let (X, d1) and (Y, d2) be two metric spaces. Let
F = {fn}n∈N and G = {gn}n∈N be time varying maps on X and Y , respectively.
If there exists a homeomorphism h : X → Y such that h ◦ fn = gn ◦ h for all
n ∈ N, then F and G are said to be conjugate (with respect to the map h) or
h-conjugate. In particular, if h : X → Y is a uniform homeomorphism, then F
and G are said to be uniformly conjugate or uniformly h-conjugate. (Recall that
homeomorphism h : X → Y , such that h and h−1 are uniformly continuous, is
called a uniform homeomorphism.)

For example, if F = {xn+1}n∈N on [0, 1] and G = {2((x+ 1)/2)n+1 − 1}n∈N
on [−1, 1], then F is uniformly h-conjugate to G, where h : [0, 1] → [−1, 1] is
defined by h(x) = 2x− 1 (see [30]).

Definition 2.2 (Shadowing property). Let F = {fn}n∈N be a time varying
map on a metric space (X, d) and Y be a subset of X. Then,

i) for δ > 0, a sequence {xn}n≥0 in X is said to be a δ-pseudo orbit if

d(fn+1(xn), xn+1) < δ for all n ≥ 0;

ii) for given ε > 0, a δ-pseudo orbit {xn}n≥0 is said to be ε-shadowed by
x ∈ X if d(Fn(x), xn) < ε for all n ≥ 0;

iii) the time varying map F is said to have shadowing property on Y if, for
every ε > 0, there exists a δ > 0 such that every δ-pseudo orbit in Y is
ε-shadowed by some point of X. If this property holds on Y = X, we
simply say that F has shadowing property.
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Remark 2.3. If F = {fn}n∈N is a time varying map on a compact metric space
(X, d) and Y is a subset of X, then it is easy to see that the time varying map
F has shadowing property on Y if and only if for every ε > 0 there is a δ > 0
such that every finite δ-pseudo orbit in Y is ε-shadowed by some point of X.

Definition 2.4 (h-shadowing property). Let F = {fn}n∈N be a time varying
map on a metric space (X, d) and Y be a subset of X. We say that F has
h-shadowing property on Y if for every ε > 0 there exists δ > 0 such that
for every finite δ-pseudo orbit {x0, x1, . . . , xm} in Y there is x ∈ X such that
d(Fn(x), xn) < ε for every 0 ≤ n < m and Fm(x) = xm. If this property holds
on Y = X, we simply say that F has h-shadowing property.

Remark 2.5. It is easy to see that every time varying map on a compact metric
space with h-shadowing property has shadowing property, but the converse is
not true, see [3, Example 6.4]. Note that each continuous map generates a time
varying map.

Now, we define the limit shadowing and s-limit shadowing properties on time
varying maps.

Definition 2.6 (Limit shadowing property). Let F = {fn}n∈N be a time
varying map on a metric space (X, d) and Y be a subset of X. Then,

i) a sequence {xn}n≥0 in X is called a limit pseudo orbit if d(fn+1(xn),
xn+1)→ 0 as n→ +∞;

ii) a sequence {xn}n≥0 in X is said to be limit shadowed if there is x ∈ X
such that d(Fn(x), xn)→ 0 as n→ +∞;

iii) the time varying map F has the limit shadowing property on Y when-
ever every limit pseudo orbit in Y is limit shadowed by some point of
X. If this property holds on Y = X, we simply say that F has limit
shadowing property.

The notion of limit shadowing property was extended to a notion so called
s-limit shadowing property, to account the fact that many systems have limit
shadowing property but not shadowing property.

Definition 2.7 (s-limit shadowing property). Let F = {fn}n∈N be a time
varying map on a metric space (X, d) and Y be a subset of X. We say that F
has s-limit shadowing property on Y if for every ε > 0 there is δ > 0 such that

i) for every δ-pseudo orbit {xn}n≥0 in Y , there exists x ∈ X satisfying
d(Fn(x), xn) < ε for all n ≥ 0, and,

ii) if in addition, {xn}n≥0 is a limit pseudo orbit in Y , then d(Fn(x), xn)→
0 as n→ +∞.

If this property holds on Y = X, we simply say that F has s-limit shadowing
property.

Example 2.8. Let X = [0, 1] ∪ {−1/2n : n ≥ 1} and f : X → X be any
homeomorphism such that f(x) = x for x = 1 or x ≤ 0 and f(x) < x for



VARIOUS SHADOWING PROPERTIES FOR TIME VARYING MAPS 485

x ∈ (0, 1). Put fn = f for every n ∈ N. Then time varying map F = {fn}n∈N
on X has shadowing and limit shadowing properties, but it does not have s-limit
shadowing property, see [3, Example 3.5].

We say that a sequence {an}n≥0 of real numbers converges to zero with rate

θ ∈ (0, 1) and write an
θ−→ 0 as n→ +∞, if there exists a constant L > 0 such

that |an| ≤ Lθn for all n ≥ 0.

Definition 2.9 (Exponential limit shadowing property). Let F = {fn}n∈N be
a time varying map on a metric space (X, d) and Y be a subset of X. Then,

i) for θ ∈ (0, 1), a sequence {xn}n≥0 in X is called a θ-exponentially limit

pseudo orbit of F if d(fn+1(xn), xn+1)
θ−→ 0 as n→ +∞;

ii) the time varying map F has the exponential limit shadowing property
with exponent ξ on Y if there exists θ0 ∈ (0, 1) so that for any θ-
exponentially limit pseudo orbit {xn}n≥0 ⊆ Y with θ ∈ (θ0, 1), there is

x ∈ X such that d(Fn(x), xn)
θξ−→ 0 as n→ +∞. In the case ξ = 1 we

say that F has the exponential limit shadowing property on Y . If this
property holds on Y = X, we simply say that F has exponential limit
shadowing property.

3. Basic properties of various notions of shadowing

Our aim of this section is to characterize the basic properties of various
notions of shadowing (i.e., shadowing, h-shadowing, limit shadowing, s-limit
shadowing and exponential limit shadowing properties) of time varying maps.
Specially, we show that h-shadowing, limit shadowing and s-limit shadowing
properties are conjugacy invariant. Moreover, by considering these notions of
shadowing, we are able to extend earlier results from other papers, identifying
some subtle changes to the theory in this case.

Thakkar and Das in [30, Theorem 3.1] show that the shadowing property of
time varying maps is conjugacy invariant. Now, in the following theorem, we
show that the h-shadowing, limit shadowing and s-limit shadowing properties
are conjugacy invariant. Our approach is similar to [30, Theorem 3.1] and for
completeness we give its proof.

Theorem 3.1. Let F = {fn}n∈N and G = {gn}n∈N be time varying maps
on metric spaces (X, d1) and (Y, d2), respectively, such that F is uniformly
conjugate to G. Then, the following statements hold:

(a) If F has the h-shadowing property, then so does G.
(b) If F has the limit shadowing property, then so does G.
(c) If F has the s-limit shadowing property, then so does G.

Proof. Since F is uniformly conjugate to G, there exists a uniform homeomor-
phism h : X → Y such that h ◦ fn = gn ◦ h for all n ∈ N, which implies
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fn ◦ h−1 = h−1 ◦ gn for all n ∈ N. Hence, for all n ≥ 0,

h ◦ Fn = h ◦ fn ◦ fn−1 ◦ · · · ◦ f1
= gn ◦ h ◦ fn−1 ◦ · · · ◦ f1
...

= gn ◦ gn−1 ◦ · · · ◦ g1 ◦ h
= Gn ◦ h.

(a) Let ε > 0 be given. By uniform continuity of h there exists an ε0 > 0
such that d1(x, y) < ε0 implies d2(h(x), h(y)) < ε. Since F has h-shadowing
property there exists a δ0 > 0 such that any finite δ0-pseudo orbit of F is ε0-
shadowed (with exact hit at the end) by F orbit of some point of X. Since h−1

is uniformly continuous, for δ0 > 0 there exists a δ > 0 such that d2(x, y) <
δ implies d1(h−1(x), h−1(y)) < δ0. Now, let {x0, x1, . . . , xm} be a finite δ-
pseudo orbit for G, i.e., d2(gn+1(xn), xn+1) < δ for every 0 ≤ n < m. Hence
d1(h−1(gn+1(xn)), h−1(xn+1)) < δ0, and so d1(fn+1(h−1(xn)), h−1(xn+1)) <
δ0. Therefore {h−1(x0), h−1(x1), . . . , h−1(xm)} is a finite δ0-pseudo orbit for
F . Thus there exists a x ∈ X such that d1(Fn(x), h−1(xn)) < ε0 for every
0 ≤ n < m and Fm(x) = h−1(xm). Hence, d2(h(Fn(x)), xn) < ε for every 0 ≤
n < m and h(Fm(x)) = xm. Thus d2(Gn(h(x)), xn) < ε for every 0 ≤ n < m
and Gm(h(x)) = xm. Thus G also has the h-shadowing property.

(b) Let F has the limit shadowing property, and let {yn}n≥0 be a limit
pseudo orbit of G, i.e., d2(gn+1(yn), yn+1)→ 0 as n→ +∞. Then, by uniform
continuity of h−1, d1(h−1 ◦ gn+1(yn), h−1(yn+1)) → 0 as n → +∞, and so
d1(fn+1 ◦ h−1(yn), h−1(yn+1))→ 0 as n→ +∞. Thus {h−1(yn)}n≥0 is a limit
pseudo orbit of F . Hence, there exists x ∈ X such that d1(Fn(x), h−1(yn))→ 0
as n→ +∞. Again, by uniform continuity of h, d2(h ◦Fn(x), h ◦h−1(yn))→ 0
as n → +∞, and so d2(Gn ◦ h(x), h ◦ h−1(yn)) → 0 as n → +∞. Hence,
d2(Gn(h(x)), yn)→ 0 as n→ +∞, which implies {yn}n≥0 is limit shadowed by
h(x) ∈ Y . Consequently, any limit pseudo orbit of G can be limit shadowed by
some point of Y . Thus G also has the limit shadowing property.

Finally, the part (c) is a direct consequence of part (b) and [30, Theorem
3.1]. �

Thakkar and Das in [30, Theorem 3.3] show that every finite direct product
of time varying maps has the shadowing property if and only if all of its time
varying maps have shadowing property. Now, in the following theorem, we
extend this property to other notions of shadowing.

Theorem 3.2. Let F = {fn}n∈N and G = {gn}n∈N be time varying maps on
metric spaces (X, d1) and (Y, d2), respectively. Define metric d on X × Y by

d((x1, y1), (x2, y2)) := max{d1(x1, x2), d2(y1, y2)}

for any (x1, y1), (x2, y2) ∈ X × Y . Then,
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(a) F and G have the h-shadowing property if and only if so does F ×G :=
{fn × gn}n∈N.

(b) F and G have the limit shadowing property if and only if so does F×G.
(c) F and G have the exponential limit shadowing property if and only if

so does F × G.
(d) F and G have the s-limit shadowing property if and only if so does
F × G.

Proof. By definitions and [30, Theorem 3.3] the proof of parts (a), (b) and (d)
are not difficult, hence we only prove the part (c).

(c) Let time varying maps F and G have the exponential limit shadowing
property. Then, there exists θF ∈ (0, 1) such that for any θ-exponentially
limit pseudo orbit {xn}n≥0 of F with θ ∈ (θF , 1), there is x ∈ X such that

d(Fn(x), xn)
θ−→ 0 as n → +∞. Also, there exists θG ∈ (0, 1) such that for

any θ-exponentially limit pseudo orbit {yn}n≥0 of G with θ ∈ (θG , 1), there

is y ∈ Y such that d(Gn(y), yn)
θ−→ 0 as n → +∞. Put θ0 = max{θG , θF},

and let {(xn, yn)}n≥0 be a θ-exponentially limit pseudo orbit of F × G with

θ ∈ (θ0, 1), i.e., d((fn+1× gn+1)(xn, yn), (xn+1, yn+1))
θ−→ 0 as n→ +∞. Then,

d1(fn+1(xn), xn+1)
θ−→ 0 and d2(gn+1(yn), yn+1)

θ−→ 0 as n→ +∞. Hence, there

exist x ∈ X and y ∈ Y such that d1(Fn(x), xn)
θ−→ 0 and d2(Gn(y), yn)

θ−→ 0 as
n→ +∞. Therefore,

d((F × G)n(x, y), (xn, yn))

= d((Fn(x),Gn(y)), (xn, yn))

≤ max{d1(Fn(x), xn), d2(Gn(y), yn)} θ−→ 0 as n→ +∞

which implies F × G also has the exponential limit shadowing property.
Conversely, let the direct product F×G has the exponential limit shadowing

property, and so there exists θ0 ∈ (0, 1) such that for any θ-exponentially limit
pseudo orbit {(xn, yn)}n≥0 of F × G with θ ∈ (θ0, 1), there is (x, y) ∈ X × Y
such that d((F × G)n(x, y), (xn, yn))

θ−→ 0 as n → +∞. Now, let {xn}n≥0 and
{yn}n≥0 be θ-exponentially limit pseudo orbits of F and G with θ ∈ (θ0, 1),

respectively, i.e., d1(fn+1(xn), xn+1)
θ−→ 0 and d2(gn+1(yn), yn+1)

θ−→ 0 as n →
+∞. Hence,

d((fn+1 × gn+1)(xn, yn), (xn+1, yn+1))

= d((fn+1(xn), gn+1(yn)), (xn+1, yn+1))

= max{d1(fn+1(xn), xn+1), d2(gn+1(yn), yn+1)}

≤ d1(fn+1(xn), xn+1) + d2(gn+1(yn), yn+1)
θ−→ 0

as n→ +∞. Therefore, {(xn, yn)}n≥0 is a θ-exponentially limit pseudo orbit of
F×G, and so there exists (x, y) ∈ X×Y such that d((F×G)n(x, y), (xn, yn)) =
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d((Fn(x),Gn(y)), (xn, yn))
θ−→ 0 as n → +∞. Hence, d1(Fn(x), xn)

θ−→ 0 and

d2(Gn(y), yn)
θ−→ 0 as n→ +∞, which implies F and G have also the exponential

limit shadowing property. �

Hence, every finite direct product of time varying maps has the h-shadowing,
limit shadowing, s-limit shadowing or exponential limit shadowing property if
and only if all of its time varying maps have h-shadowing, limit shadowing,
s-limit shadowing or exponential limit shadowing property, respectively.

Theorem 3.3. Let F = {fn}n∈N be a time varying map on metric space (X, d)
and k ∈ N. Then, the following statements hold:

(a) If F has the limit shadowing property, then so does Fk.
(b) If F has the exponential limit shadowing property, then so does Fk.
(c) If F has the s-limit shadowing property, then so does Fk.

Proof. (a) The case k = 1 is trivial, so let k ≥ 2 and {yn}n≥0 be a limit
pseudo orbit of Fk. Then d(gn+1(yn), yn+1) → 0 as n → +∞, where gn =
F[(n−1)k+1,nk] for all n ∈ N, and so d(F[nk+1,(n+1)k](yn), yn+1)→ 0 as n→ +∞.
Put

(3) xnk+j := F[nk+1,nk+j](yn) for 0 ≤ j < k and n ≥ 0.

Claim. The sequence {xn}n≥0 is a limit pseudo orbit for F , i.e.,

d(fnk+j+1(xnk+j), xnk+j+1)→ 0

as n→ +∞, for all n ≥ 0 and 0 ≤ j < k.
To prove the claim, choose any n ≥ 0. Then for any 0 ≤ j < k − 1,

fnk+j+1(xnk+j) = fnk+j+1(F[nk+1,nk+j](yn)) = F[nk+1,nk+j+1](yn) = xnk+j+1.

Thus d(fnk+j+1(xnk+j), xnk+j+1) = 0 for all n ≥ 0 and 0 ≤ j < k − 1. Now
for j = k − 1,

d(fnk+k(xnk+k−1), xnk+k) = d(fnk+k(F[nk+1,nk+k−1](yn)), xnk+k)

= d(F[nk+1,(n+1)K](yn), yn+1)

= d(gn+1(yn), yn+1).

Hence, d(fn+1(xn), xn+1) → 0 as n → +∞, since d(gn+1(yn), yn+1) → 0 as
n→ +∞, which completes the proof of the claim.

Now, by the limit shadowing property of F , {xn}n≥0 is limit shadowed by
some x∈X, i.e., d(Fn(x), xn)→ 0 as n→ +∞. In particular, d(Fkn(x), xkn)→
0 as n → +∞. Thus d(Fkn(x), yn) → 0 as n → +∞, since yn = xkn and
Fkn = Fkn, which implies {yn}n≥0 is limit shadowed by x ∈ X. Consequently,
any limit pseudo orbit of Fk can be limit shadowed by some point of X. Thus
Fk has also the limit shadowing property.

(b) For k = 1 this is trivial, so let k ≥ 2. Since the time varying map F
has the exponential limit shadowing property, there exists θ0 ∈ (0, 1) such that
for any θ-exponentially limit pseudo orbit {xn}n≥0 of F with θ ∈ (θ0, 1), there
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is x ∈ X such that d(Fn(x), xn)
θ−→ 0 as n → +∞. Put θ1 := θ

1/k
0 . Now, let

{yn}n≥0 be a θ-exponentially limit pseudo orbit of Fk with θ ∈ (θ1, 1), i.e.,

d(gn+1(yn), yn+1)
θ−→ 0 as n → +∞, where gn = F[(n−1)k+1,nk] for all n ∈ N.

Hence, there is L > 0 such that d(gn+1(yn), yn+1) ≤ Lθn for all n ≥ 0. Consider
the sequence {xn}n≥0 given by relation (3). Then, one has for all n ≥ 0 and
0 ≤ j < k − 1:

d(fnk+j+1(xnk+j), xnk+j+1) = 0 ≤ (Lθ
1−k
k )(θ1/k)nk+j ,

and for j = k − 1:

d(fnk+k(xnk+k−1), xnk+k) = d(gn+1(yn), yn+1) ≤ Lθn = (Lθ
1−k
k )(θ1/k)nk+k−1.

Thus {xn}n≥0 is a θ1/k-exponentially limit pseudo orbit for F . Hence, by
exponential limit shadowing property of F , there is x ∈ X such that

d(Fn(x), xn)
θ1/k−−−→ 0 as n→ +∞.

In particular, d(Fkn(x), xkn)
θ1/k−−−→ 0 as n → +∞. Thus d(Fkn(x), yn)

θ−→ 0 as
n→ +∞, which implies Fk has the exponential limit shadowing property.

Finally, part (c) is a direct consequence of part (a) and [30, Theorem 3.3],
which completes the proof of the theorem. �

In the following theorem, we show that if we can find some iterate of a time
varying map which has h-shadowing property, then we can deduce that the
time varying map itself has h-shadowing property. We need the assumption of
equicontinuity.

Definition 3.4 (Equicontinuity). Time varying map F = {fn}n∈N on a metric
space (X, d) is said to be equicontinuous if for each ε > 0 there exists δ > 0
such that d(x, y) < δ implies d(F[i,j](x),F[i,j](y)) < ε for all 1 ≤ i ≤ j.

Theorem 3.5. Let F = {fn}n∈N be an equicontinuous time varying map on
a compact metric space (X, d) and Y be an invariant subset of X. Then, the
following conditions are equivalent:

(a) F has the h-shadowing property on Y .
(b) Fk has the h-shadowing property on Y for some k ∈ N.
(c) Fk has the h-shadowing property on Y for all k ∈ N.

Proof. First we prove (a)⇒(c). By the h-shadowing property of F , for ε > 0
there exists δ > 0 such that every finite δ-pseudo orbit in Y is ε-shadowed (with
exact hit at the end) by F orbit of some point in X. Now, let {x0, x1, . . . , xm} ⊆
Y be a finite δ-pseudo orbit for Fk = {gn}n∈N , where gn = F[(n−1)k+1,nk].
Then the sequence

{x0,F[1,1](x0),F[1,2](x0), . . . ,F[1,k−1](x0), x1,F[k+1,k+1](x1),F[k+1,k+2](x1),

. . . ,F[k+1,2k−1](x1), x2, . . . , xm−1,F[(m−1)k+1,(m−1)k+1](xm−1),

F[(m−1)k+1,(m−1)k+2](xm−1), . . . ,F[(m−1)k+1,mk−1](xm−1), xm}



490 J. NAZARIAN SARKOOH

is a finite δ-pseudo orbit for F which ε-shadowed by some point x ∈ X such
that Fmk(x) = xm. Hence Fk has the h-shadowing property on Y for all k ∈ N
because of gn ◦ · · · ◦ g1 = Fnk for 1 ≤ n ≤ m.

Implication (c)⇒(b) is trivial.
To prove (b)⇒(a), fix ε > 0 and suppose that Fk has h-shadowing property

on Y for some k ∈ N. Since time varying map F is equicontinuous andX is com-
pact, there exists η > 0 such that d(x, y) < η implies d(F[n,n+i](x),F[n,n+i](y))
< ε

2 for every n ≥ 1 and 0 ≤ i ≤ k.

By the h-shadowing property of Fk there exists 0 < δ < ε
2 such that each

finite δ-pseudo orbit of Fk is η-shadowed by Fk orbit of some point of X
which hits the last element of the pseudo orbit. Since time varying map F is
equicontinuous and X is compact, there exists 0 < γ < δ

k such that d(x, y) < γ

implies d(F[n,n+i](x),F[n,n+i](y)) < δ
k for every n ≥ 1 and 0 ≤ i ≤ k.

Now, let {x0, x1, . . . , xm} ⊆ Y be any finite γ-pseudo orbit for F and write
m = sk + r for some s ≥ 0 and some 0 ≤ r < k. Then the sequence

{x0, x1, . . . , xm,F[m+1,m+1](xm),F[m+1,m+2](xm), . . . ,F[m+1,m+k−r](xm)} ⊆ Y

is a finite γ-pseudo orbit for F (note that Y is an invariant subset of X),
which we enumerate obtaining the sequence {x0, x1, . . . , x(s+1)k}. We claim

that {x0, xk, x2k, . . . , x(s+1)k} is a finite δ-pseudo orbit for Fk. Indeed,

d(F[1,k](x0), xk) ≤ d(xk,F[k,k](xk−1)) + d(F[k,k](xk−1),F[k−1,k](xk−2))

+ · · ·+ d(F[2,k](x1),F[1,k](x0))

< γ + (k − 1)
δ

k
< δ.

Similarly for 1 ≤ i ≤ s, we have d(F[(i−1)k+1,ik](x(i−1)k), xik) < δ. Finally,

d(F[sk+1,(s+1)k](xsk), x(s+1)k)

≤ d(x(s+1)k,F[(s+1)k,(s+1)k](x(s+1)k−1))

+ d(F[(s+1)k,(s+1)k](x(s+1)k−1),F[(s+1)k−1,(s+1)k](x(s+1)k−2))

+ · · ·+ d(F[sk+2,(s+1)k](xsk+1),F[sk+1,(s+1)k](xsk))

< r(
δ

k
) < δ.

By h-shadowing property of Fk there is x ∈ X such that d(F[1,ik](x), xik) < η
for every 0 ≤ i ≤ s and F[1,(s+1)k](x) = x(s+1)k. Now, for every 0 ≤ j < k we
have

d(F[1,ik+j](x),F[ik+1,ik+j](xik)) <
ε

2

and

d(F[ik+1,ik+j](xik), xik+j) ≤ d(xik+j ,F[ik+j,ik+j](xik+j−1))

+d(F[ik+j,ik+j](xik+j−1),F[ik+j−1,ik+j](xik+j−2))
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+· · ·+ d(F[ik+2,ik+j](xik+1),F[ik+1,ik+j](xik))

< γ + (k − 1)
δ

k
< δ <

ε

2
.

So d(F[1,ik+j](x), xik+j) < ε. Also, fm+k−r ◦ · · · ◦ f1(x) = x(s+1)k = fm+k−r ◦
· · · ◦ fm+1(xm) which implies Fm(x) = xm. Hence F has the h-shadowing
property on Y . �

Lemma 3.6. Let F = {fn}n∈N be a time varying map on a metric space
(X, d) and k ∈ N such that f1, f2, . . . , fk are surjective. Then, F has the
limit shadowing property if and only if F(k, shift) = {fn}∞n=k+1 has the limit
shadowing property.

Proof. Let F(k, shift) has the limit shadowing property, and let {xn}n≥0 be a
limit pseudo orbit of F , i.e., d(fn+1(xn), xn+1) → 0 as n → +∞. Then, the
sequence {yn}n≥0 in which yn = xn+k is a limit pseudo orbit of F(k, shift),
i.e., d(fn+k+1(yn), yn+1) → 0 as n → +∞. Hence, there exists y ∈ X such
that d(Fn(k, shift)(y), yn) → 0 as n → +∞, where Fn(k, shift) = fn+k ◦ · · · ◦
fk+2 ◦ fk+1. Now, consider a preimage x of y under Fk, i.e., Fk(x) = y (note
that f1, f2, . . . , fk are surjective). Then d(Fn(x), xn) → 0 as n → +∞, which
implies {xn}n≥0 is limit shadowed by x ∈ X. Consequently, any limit pseudo
orbit of F can be limit shadowed by some point of X. Thus F also has the
limit shadowing property.

Conversely, let F has the limit shadowing property, and let {xn}n≥0 be a
limit pseudo orbit of F(k, shift), i.e., d(fn+k+1(xn), xn+1) → 0 as n → +∞.
Then the sequence {yn}n≥0, where yn+k = xn for n ≥ 0 and y1, y2, . . . , yk−1 are
arbitrary points of X, is a limit pseudo orbit of F , i.e., d(fn+1(yn), yn+1)→ 0 as
n → +∞. Hence, there exists y ∈ X such that d(Fn(y), yn) → 0 as n → +∞.
Now, put x = fk ◦ · · · ◦ f2 ◦ f1(y). Then d(Fn(k, shift)(x), xn)→ 0 as n→ +∞,
which implies {xn}n≥0 is limit shadowed by x ∈ X. Consequently, any limit
pseudo orbit of F(k, shift) can be limit shadowed by some point of X. Thus
F(k, shift) also has the limit shadowing property. �

4. Shadowing properties and expansivity

In this section, we investigate the relationships between various notions of
shadowing for time varying maps and examine the role that expansivity plays in
shadowing properties of such dynamical systems. We prove some results link-
ing s-limit shadowing property to limit shadowing property, and h-shadowing
property to s-limit shadowing and limit shadowing properties. Finally, under
the assumption of expansivity, we show that the shadowing property implies
the h-shadowing, s-limit shadowing and limit shadowing properties.

Lemma 4.1. Let F = {fn}n∈N be a time varying map on a metric space
(X, d) and Y be a subset of X. If Y ⊆ fn(Y ) for every n ∈ N and F has
s-limit shadowing property on Y , then F also has limit shadowing property on
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Y . In particular, if F is a time varying map of surjective maps and has s-limit
shadowing property, then F also has limit shadowing property.

Proof. Fix ε > 0 and let δ > 0 be given by the s-limit shadowing property.
Let {xn}n≥0 ⊆ Y be a limit pseudo orbit of F , i.e., d(fn+1(xn), xn+1) → 0
as n → +∞. Then for some n0 ∈ N, d(fn+1(xn), xn+1) < δ for every
n ≥ n0. By assumption Y ⊆ fn(Y ) for every n ∈ N, there is y0 ∈ Y such
that {y0,F1(y0), . . . ,Fn−1(y0)} ⊆ Y and Fn(y0) = xn0

. Hence, the sequence
{y0,F1(y0), . . . ,Fn−1(y0), xn0

, xn0+1, . . .} is δ-pseudo orbit and limit pseudo or-
bit. By s-limit shadowing property, {y0,F1(y0), . . . ,Fn−1(y0), xn0

, xn0+1, . . .}
is ε-shadowed and limit shadowed by some point y ∈ X. Therefore {xn}n≥0
is limit shadowed by y which implies F has the limit shadowing property on
Y . �

Theorem 4.2. Let F = {fn}n∈N be a time varying map on a compact metric
space (X, d) and Y be a closed subset of X. Then, the following statements
hold:

(a) If there is an open set U such that Y ⊆ U and F has h-shadowing
property on U , then F has s-limit shadowing property on Y . If in
addition, Y ⊆ fn(Y ) for every n ∈ N, then F has limit shadowing
property on Y .

(b) If Y is invariant and F|Y has h-shadowing property, then F|Y has
s-limit shadowing property and limit shadowing property.

(c) If F has h-shadowing property, then F has s-limit shadowing property.
If in addition, F is a time varying map of surjective maps, then F has
limit shadowing property.

Proof. (a) Since X is compact, then by Remark 2.5 every time varying map
with h-shadowing property has shadowing property. Hence the first half of the
definition of s-limit shadowing property is satisfied trivially.

So fix ε > 0 such that B(Y, 3ε) ⊆ U and denote εn = 2−n−2ε for every n ∈
N∪{0} (note that B(Y, r) is the r-neighborhood of the set Y ). By the definition
of h-shadowing property there are {δn > 0}n∈N∪{0} such that every finite δn-
pseudo orbit in U is εn-shadowed by some point of X (with exact hit at the
end). Fix any δ0-pseudo orbit {xn}n≥0 ⊆ Y such that d(fn+1(xn), xn+1) → 0
as n → +∞. There is an increasing sequence {ki}i∈N∪{0} such that {xn}n≥ki
is a δi-pseudo orbit for F(ki, shift) = {fn}∞n=ki+1 and obviously k0 = 0. Note
that if w is a point such that Fki(w) = xki , then the sequence

{w,F1(w), . . . ,Fki(w), xki+1, . . . , xki+1
}

is a finite δi-pseudo orbit. Let z0 be a point which ε0-shadows the finite δ0-
pseudo orbit {x0, . . . , xk1} with exact hit at the end, i.e., Fk1(z0) = xk1 . Note
that Fj(z0) ∈ U for 0 ≤ j ≤ k1.

For i ∈ N, assume that zi is a point which εi-shadows the finite δi-pseudo
orbit
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{zi−1,F1(zi−1), . . . ,Fki(zi−1), xki+1, . . . , xki+1
} ⊆ U

with exact hit at the end. Then by h-shadowing property there is a point zi+1

which εi+1-shadows the finite δi+1-pseudo orbit

{zi,F1(zi), . . . ,Fki+1
(zi), xki+1+1, . . . , xki+2

} ⊆ U

with exact hit at the end. Thus we can produce a sequence {zi}i≥0 with the
following properties:

(1) d(Fj(zi−1),Fj(zi)) < εi for 0 ≤ j ≤ ki and i ≥ 1;
(2) d(Fj(zi), xj) < εi for ki < j ≤ ki+1 and i ≥ 0;
(3) Fki+1

(zi) = xki+1
for i ≥ 0;

(4) d(Fj(zi), Y ) < ε for j ≤ ki+1.

Since X is compact, there is an increasing sequence {si}i≥1 such that the limit
z = limi→∞ zsi exists. Hence, for any j, n ∈ N there exist i0 ≥ 0 and m ≥ i0
such that ki0 < j ≤ ki0+1 and d(Fj(z),Fj(zsm)) < εn+1. So we get

d(Fj(z), xj) ≤ d(Fj(z),Fj(zsm)) + d(Fj(zi0), xj) +

sm−1∑
i=i0

d(Fj(zi),Fj(zi+1))

< εn+1 + εi0 +

sm−1∑
i=i0

εi+1 < 2−n−3ε+

∞∑
i=i0

2−i−2ε

= ε(2−n−3 + 2−i0−1) < ε.

Furthermore, for any n, let j > kn+2. Then, there is i1 ≥ n + 2 such that
ki1 < j ≤ ki1+1 and there is m > i1 such that d(Fj(z),Fj(zsm)) < εn+1.
Hence, as before we obtain

d(Fj(z), xj) < ε(2−n−3 + 2−i1−1) ≤ ε(2−n−3 + 2−n−3) = εn.

This immediately implies that lim supj→∞ d(Fj(z), xj) ≤ εn. Since n was
arbitrary, we have limj→∞ d(Fj(z), xj) = 0. This shows that F has s-limit
shadowing property on Y .

Finally, (b) and (c) follow directly from (a) and Lemma 4.1 (since U = Y is
open in Y ), which completes the proof of the theorem. �

Definition 4.3 (Expansivity). An time varying map F = {fn}n∈N on a metric
space (X, d) is called strongly expansive if there exists γ > 0 (called expansivity
constant) such that for any two distinct points x, y ∈ X and every N ∈ N,
d(F[N,n](x),F[N,n](y)) > γ for some n ≥ N . Equivalently, if for x, y ∈ X and
some N ∈ N, d(F[N,n](x),F[N,n](y)) ≤ γ for all n ≥ N , then x = y.

Corollary 4.4. Let F = {fn}n∈N be a time varying map on a compact metric
space (X, d).

(a) If F is strongly expansive, then F has the shadowing property if and
only if F has the h-shadowing property.
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(b) If F is strongly expansive and has the shadowing property, then F has
the h-shadowing and s-limit shadowing properties. If in addition, F is
a time varying map of surjective maps, then F has the limit shadowing
property.

Proof. If F has the h-shadowing property, then F has the shadowing property
(see Remark 2.5). So suppose that F has the shadowing property. Let ε <
γ and let δ > 0 be provided by shadowing property for ε, where γ is the
expansivity constant. Fix any finite δ-pseudo orbit {x0, x1, . . . , xm} and extend
it to the infinite δ-pseudo orbit

{x0, x1, . . . , xm,F[m+1,m+1](xm),F[m+1,m+2](xm),F[m+1,m+3](xm), . . .}.

If x is a point which ε-shadows the above δ-pseudo orbit, then

d(F[m+1,m+j](Fm(x)),F[m+1,m+j](xm)) < ε < γ

for all j ≥ 0 which implies that Fm(x) = xm. Thus F has the h-shadowing
property. Finally, (b) is a direct consequence of part (a) and Theorem 4.2,
which completes the proof. �

5. Uniformly contracting and uniformly expanding time varying
maps

In this section, we investigate various notions of shadowing for uniformly
contracting and uniformly expanding time varying maps. We show that the
uniformly contracting and uniformly expanding time varying maps exhibit the
shadowing, limit shadowing, s-limit shadowing and exponential limit shadowing
properties. Moreover, we show that any time varying map of a finite set of
hyperbolic linear homeomorphisms on a Banach space with the same stable
and unstable subspaces has the shadowing, limit shadowing, s-limit shadowing
and exponential limit shadowing properties.

Definition 5.1 (Uniformly contracting and uniformly expanding time varying
map). Let F = {fn}n∈N be a time varying map on a metric space (X, d). Then,

i) the time varying map F is uniformly contracting if its contracting ratio
which denoted by α exists and is less than one, where

α := sup
n∈N

sup
x,y∈X
x 6=y

d(fn(x), fn(y))

d(x, y)
;

ii) the time varying map F is uniformly expanding if its expanding ratio
which denoted by β exists and is greater than one, where

β := inf
n∈N

inf
x,y∈X
x 6=y

d(fn(x), fn(y))

d(x, y)
.
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In the following theorem, we show that uniformly contracting time varying
maps exhibit the shadowing, limit shadowing, s-limit shadowing and exponen-
tial limit shadowing properties.

Theorem 5.2. Let F = {fn}n∈N be a uniformly contracting time varying map
on a metric space (X, d). Then,

(a) F has the shadowing property;
(b) F has the limit shadowing property;
(c) F has the exponential limit shadowing property;
(d) F has the s-limit shadowing property.

Proof. Assume that the time varying map F is uniformly contracting with the
contracting ratio α.

(a) Given ε > 0 take δ = (1−α) ε2 ≤
ε
2 , and let {xn}n≥0 be a δ-pseudo orbit

of F , i.e., d(fn+1(xn), xn+1) < δ for all n ≥ 0. Consider a point x ∈ X with
d(x, x0) ≤ ε

2 . We show that the δ-pseudo orbit {xn}n≥0 is ε-shadowed by x,
i.e., d(Fn(x), xn) < ε for all n ≥ 0. Observe that d(F0(x), x0) ≤ ε

2 and

d(F1(x), x1) ≤ d(F1(x), f1(x0)) + d(f1(x0), x1) ≤ αd(x, x0) + δ.

Similarly,

d(F2(x), x2) ≤ d(F2(x), f2(x1)) + d(f2(x1), x2)

= d(f2(F1(x)), f2(x1)) + d(f2(x1), x2)

≤ αd(F1(x), x1) + δ

≤ α2d(x, x0) + δα+ δ.

By induction, for each n ≥ 0, one can show that

d(Fn(x), xn) ≤ αnd(x, x0) + δ(αn−1 + αn−2 + · · ·+ α+ 1).

Now, the last inequality together with d(x, x0) ≤ ε
2 imply

d(Fn(x), xn) ≤ d(x, x0) + δ(
1

1− α
) ≤ ε

2
+
ε

2
= ε.

Hence, the δ-pseudo orbit {xn}n≥0 is ε-shadowed by x and so time varying
map F has the shadowing property, which completes the proof of part (a).

(b) Let {xn}n≥0 be a limit pseudo orbit of F , i.e., d(fn+1(xn), xn+1) → 0
as n → +∞. Put τn = d(fn+1(xn), xn+1) for all n ≥ 0 (note that τn → 0 as
n → +∞). Now, we show that d(Fn(x0), xn) → 0 as n → +∞, which implies
{xn}n≥0 is limit shadowed by x0. To prove this, suppose ε is an arbitrary
positive real number and M = supn≥0 τn. We can find k ∈ N such that

M αk

1−α <
ε
2 and τi < ε 1−α2 for all i ≥ k. Obviously, d(F0(x0), x0) = 0 and

d(F1(x0), x1) ≤ d(F1(x0), f1(x0)) + d(f1(x0), x1) = d(f1(x0), f1(x0)) + τ0 = τ0.

Similarly,

d(F2(x0), x2) ≤ d(F2(x0), f2(x1)) + d(f2(x1), x2)
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= d(f2(F1(x0)), f2(x1)) + d(f2(x1), x2)

≤ αd(F1(x0), x1) + τ1

≤ ατ0 + τ1,

and

d(F3(x0), x3) ≤ d(F3(x0), f3(x2)) + d(f3(x2), x3)

= d(f3(F2(x0)), f3(x2)) + d(f3(x2), x3)

≤ αd(F2(x0), x2) + τ2

≤ α(ατ0 + τ1) + τ2

= α2τ0 + ατ1 + τ2.

By induction, for each n ≥ 0 we have that

d(Fn(x0), xn) ≤ αn−1τ0 + αn−2τ1 + · · ·+ ατn−2 + τn−1.

Hence for n ≥ k, we have

d(Fn(x0), xn) ≤ αn−1τ0 + αn−2τ1 + · · ·+ αk+1τn−(k+2) + αkτn−(k+1)

+ αk−1τn−k + · · ·+ ατn−2 + τn−1

≤ Mαk(1 + α+ · · ·+ αn−k−1) + ε
1− α

2
(1 + α+ · · ·+ αk−1)

= Mαk
αn−k

1− α
+ ε

1− α
2

αk

1− α
≤ ε

2
+
ε

2
= ε.

Therefore d(Fn(x0), xn) ≤ ε as n → +∞. Since ε > 0 was arbitrary, we
conclude that d(Fn(x0), xn)→ 0 as n→ +∞. Hence, time varying map F has
the limit shadowing property, which completes the proof of part (b).

(c) We choose θ0 ∈ (α, 1) and show that F has the exponential limit shad-
owing property with respect to this θ0. Let {xn}n≥0 be a θ-exponentially limit

pseudo orbit of F with θ ∈ (θ0, 1), i.e., d(fn+1(xn), xn+1)
θ−→ 0 as n → +∞.

Then, there exists L > 0 such that d(fn+1(xn), xn+1) ≤ Lθn for all n ≥ 0.
Hence,

d(Fn(x0), xn) ≤ d(Fn(x0), fn(xn−1)) + d(fn(xn−1), xn)

= d(fn(Fn−1(x0)), fn(xn−1)) + d(fn(xn−1), xn)

≤ αd(Fn−1(x0), xn−1) + Lθn

≤ α2d(Fn−2(x0), xn−2) + αLθn−1 + Lθn

...

≤ αn−1Lθ + αn−2Lθ2 + · · ·+ α2Lθn−2 + αLθn−1 + Lθn

= L(1 + αθ−1 + α2θ−2 + · · ·+ αn−1θ−n+1)θn
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≤ L(1 + αθ−1 + α2θ−2 + · · ·+ αn−1θ−n+1)θn−1

≤ (
L

θ − α
)θn.

Therefore d(Fn(x0), xn)
θ−→ 0 as n → +∞, i.e., time varying map F has the

exponential limit shadowing property, which completes the proof of part (c).
Finally, the part (d) is a direct consequence of our process in parts (a) and

(b), which completes the proof of the theorem. �

Remark 5.3. In general a time varying map with shadowing and limit shadow-
ing properties does not have s-limit shadowing property, see Example 2.8.

Corollary 5.4. Let I be a non-empty finite set and for every i ∈ I, fi : R→ R
be a differentiable function. Assume that the maps fi have a common attractor
fixed point p ∈ R, i.e., fi(p) = p and |f ′i(p)| < 1 for all i ∈ I. Set A = {fi}i∈I .
Then, there is an open interval U about p such that f(U) ⊂ U for all f ∈ A.
Moreover, each time varying map F = {fn}n∈N with fn ∈ A on U has the
shadowing, limit shadowing, s-limit shadowing and exponential limit shadowing
properties.

Proof. By [8, Proposition 4.4], for each i ∈ I there is an open interval Ui about
p such that if x ∈ Ui, then fi(x) ∈ Ui and fni (x) → p as n → +∞. Hence, we
can find an open interval U ⊂ ∩i∈IUi and 0 < ε < 1 such that if x ∈ U , then
|f ′i(x)| < 1 − ε, fi(x) ∈ U and fni (x) → p as n → +∞, for every i ∈ I. This

implies that for all x, y ∈ U , we have |fi(x)−fi(y)||x−y| < 1 − ε. Hence, each time

varying map F = {fn}n∈N with fn ∈ A on U is uniformly contracting, and so
by Theorem 5.2 it has the shadowing, limit shadowing, s-limit shadowing and
exponential limit shadowing properties. �

In the following, we provide two uniformly contracting time varying maps.

Example 5.5. Let Σ2 := {0, 1}N = {x = (x1x2 · · · ) : xn ∈ {0, 1}} be the
Bernoulli space. Consider in Σ2 the distance defined by

d(x, y) =

{
2−N if x 6= y and N = min{i : xi 6= yi},

0 if x = y.

Now, let f, g : Σ2 → Σ2 be two maps defined as follows:

f((x1x2 · · · )) = (0x1x2 · · · ), g((x1x2 · · · )) = (1x1x2 · · · ).

Then, any time varying map F = {fn}n∈N with fn ∈ {f, g} is uniformly
contracting, and so by Theorem 5.2 it has the shadowing, limit shadowing,
s-limit shadowing and exponential limit shadowing properties.

Example 5.6. Let X ⊂ R2 be the Sierpinski triangle on the solid equilateral
triangle which is constructed by repeatedly removing inverted maximal equi-
lateral (solid) triangles from a given equilateral (solid) triangle. Denote the
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sets in this construction by X0, X1, . . ., whereby X =
⋂∞
n=0Xn. Then X is

selfsimilar,

X =

3⋃
i=1

gi(X),

where the g1, g2, g3 : R2 → R2 are the homotheties of rate 1/2 that keep one
of the three vertices of X0 fixed, see [27] for more details. Then gi, i = 1, 2, 3,
are uniformly contracting. Hence, by Theorem 5.2, each time varying map
F = {fn}n∈N with fn ∈ {g1, g2, g3} is uniformly contracting, and so it has the
shadowing, limit shadowing, s-limit shadowing and exponential limit shadowing
properties.

In the following theorem, we show that every uniformly expanding time
varying map has the shadowing, limit shadowing, s-limit shadowing and expo-
nential limit shadowing properties. Note that Castro, Rodrigues and Varandas
([7, Lemma 2.1]) assert that the uniformly expanding time varying maps having
the shadowing property. Also, Nazarian Sarkooh and Ghane ([24, Proposition
4.12]) showed that the uniformly Ruelle-expanding time varying maps having
the shadowing property. Here, we give a different proof for shadowing property
of uniformly expanding time varying maps and use it to yield the limit shad-
owing, s-limit shadowing and exponential limit shadowing properties. Recall
that an expanding and surjective map is invertible.

Theorem 5.7. Let F = {fn}n∈N be a uniformly expanding time varying map
of surjective maps on a complete metric space (X, d). Then,

(a) F has the shadowing property;
(b) F has the limit shadowing property;
(c) F has the exponential limit shadowing property;
(d) F has the s-limit shadowing property.

Proof. Here, we use the approach used in the proof of [11, Theorem 2.2]. Given
n ∈ N, consider the function ϕn : X ×X → [0,+∞), defined by

ϕn(x, y) =


d(fn(x), fn(y))

d(x, y)
if x 6= y,

β if x = y,

where β > 1 is the expanding ratio of the uniformly expanding time varying
map F . Hence, one has

(4) d(x, y) =
d(fn(x), fn(y))

ϕn(x, y)
, ϕn(x, y) ≥ β for all x, y ∈ X and n ∈ N.

(a) Given ε > 0 take δ = (β − 1)ε, and let {xn}n≥0 be a δ-pseudo orbit of
F , i.e., d(fn+1(xn), xn+1) < δ for all n ≥ 0. Consider the sequence {zn}n≥0 in
X, defined as follows:

(5) z0 = x0, zn = f−11 ◦ f−12 ◦ · · · ◦ f−1n (xn) for all n ∈ N.



VARIOUS SHADOWING PROPERTIES FOR TIME VARYING MAPS 499

Then, xn = fn ◦ fn−1 ◦ · · · ◦ f1(zn) for all n ∈ N. Given n ∈ N and 1 ≤ k ≤ n,
denote

(6) z(k)n = fk ◦ fk−1 ◦ · · · ◦ f1(zn).

Therefore, for any n ∈ N and 1 ≤ k ≤ n, one has

(7) z(k)n = fk(z(k−1)n ), xn = z(n)n = fn(z(n−1)n ).

We claim that {zn}n≥0 is a Cauchy sequence. Firstly, fixing n ∈ N and p ≥ 1,
and using (4), (6) and (7), we obtain

d(zn, zn+p) =
d(f1(zn), f1(zn+p))

ϕ1(zn, zn+p)

=
d(z

(1)
n , z

(1)
n+p)

ϕ1(zn, zn+p)

=
d(z

(2)
n , z

(2)
n+p)

ϕ1(zn, zn+p)ϕ2(z
(1)
n , z

(1)
n+p)

...

=
d(z

(n)
n , z

(n)
n+p)

ϕ1(zn, zn+p)
∏n
i=2 ϕi(z

(i−1)
n , z

(i−1)
n+p )

=
d(xn, z

(n)
n+p)

ϕ1(zn, zn+p)
∏n
i=2 ϕi(z

(i−1)
n , z

(i−1)
n+p )

.

(8)

Secondly, by induction on p ≥ 1 we show that the following inequality holds
uniformly with respect to n ∈ N:

(9) d(xn, z
(n)
n+p) ≤ δ

p∑
k=1

β−k.

Indeed, for p = 1 the inequality (9) follows from (4) and (7):

(10) d(xn, z
(n)
n+1) =

d(fn+1(xn), fn+1(z
(n)
n+1))

ϕn+1(xn, z
(n)
n+1)

=
d(fn+1(xn), xn+1)

ϕn+1(xn, z
(n)
n+1)

≤ δ

β
.

Assume that (9) holds for some p = q ≥ 1 uniformly on n ∈ N. Taking into
account this assumption, as well as (4) and (7), we prove (9) for p = q + 1:

d(xn, z
(n)
n+q+1) =

d(fn+1(xn), fn+1(z
(n)
n+q+1))

ϕn+1(xn, z
(n)
n+q+1)

(11)

=
d(fn+1(xn), z

(n+1)
n+1+q)

ϕn+1(xn, z
(n)
n+q+1)
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≤
d(fn+1(xn), xn+1) + d(xn+1, z

(n+1)
n+1+q)

ϕn+1(xn, z
(n)
n+1+q)

≤ 1

β
(δ + δ

q∑
k=1

β−k) = δ

q+1∑
k=1

β−k.

Therefore (9) holds.
Now, the relations (4), (8) and (9) give us the following estimation for

d(zn, zn+p) with any n ∈ N and p ≥ 1:

d(zn, zn+p) ≤
δ
∑p
k=1 β

−k

ϕ1(zn, zn+p)
∏n
i=2 ϕi(z

(i−1)
n , z

(i−1)
n+p )

≤ δ

(β − 1)ϕ1(zn, zn+p)
∏n
i=2 ϕi(z

(i−1)
n , z

(i−1)
n+p )

=
ε

ϕ1(zn, zn+p)
∏n
i=2 ϕi(z

(i−1)
n , z

(i−1)
n+p )

≤ εβ−n.

(12)

This inequality proves the claim, i.e., {zn}n≥0 is a Cauchy sequence. Therefore,
the sequence {zn}n≥0 is convergent to some point x ∈ X. From (6) and (12)
one has

lim
n→∞

z(k)n = fk ◦ fk−1 ◦ · · · ◦ f1(x) = Fk(x) for any k ≥ 1,

and

d(zn, x) ≤ ε

ϕ1(zn, x)
∏n
i=2 ϕi(z

(i−1)
n ,Fi−1(x))

as p→∞, for n ≥ 1.

Hence, for n ≥ 1 we get

d(Fn(x), xn) = d(fn ◦ · · · ◦ f1(x), fn ◦ · · · ◦ f1(zn))

= ϕn(Fn−1(x), zn−1n )d(fn−1 ◦ · · · ◦ f1(x), fn−1 ◦ · · · ◦ f1(zn))

= ϕn(Fn−1(x), zn−1n )ϕn−1(Fn−2(x), zn−2n )

d(fn−2 ◦ · · · ◦ f1(x), fn−2 ◦ · · · ◦ f1(zn))

...

= ϕn(Fn−1(x), zn−1n )ϕn−1(Fn−2(x), zn−2n ) · · ·ϕ1(x, zn)d(x, zn)

≤ ε.

Also, for the lacking case n = 0

d(F0(x), x0) = d(x, x0) =
d(f1(x), f1(x0))

ϕ1(x, x0)

=
d(f1(x), x1) + d(x1, f1(x0))

ϕ1(x, x0)
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=
d(F1(x), x1) + d(x1, f1(x0))

ϕ1(x, x0)

≤ ε+ δ

β
=
ε+ βε− ε

β
= ε.

Hence, {xn}n≥0 is ε-shadowed by x. Thus F has the shadowing property which
completes the proof of part (a).

(b) Let ε > 0 and {xn}n≥0 be a limit pseudo orbit of F , i.e.,

d(fn+1(xn), xn+1)→ 0 as n→ +∞.

Therefore, there is N0 ∈ N such that d(fn+1(xn), xn+1) < ε for all n ≥ N0.

Now, consider the sequence {zn}n≥0 and notation z
(k)
n as given by relations (5)

and (6). We claim that {zn}n≥0 is a Cauchy sequence. Hence, by induction
on p ≥ 1 we show that the following inequality holds uniformly with respect to
n ≥ N0:

(13) d(xn, z
(n)
n+p) ≤ ε

p∑
k=1

β−k.

Indeed, for p = 1 the inequality (13) follows from (4) and (7):

d(xn, z
(n)
n+1) =

d(fn+1(xn), fn+1(z
(n)
n+1))

ϕn+1(xn, z
(n)
n+1)

=
d(fn+1(xn), xn+1)

ϕn+1(xn, z
(n)
n+1)

≤ ε

β
.

Assume that (13) holds for some p = q ≥ 1 uniformly on n ≥ N0. Taking
into account this assumption, as well as (4), (7) and (11), we prove (13) for
p = q + 1:

d(xn, z
(n)
n+q+1) ≤

d(fn+1(xn), xn+1) + d(xn+1, z
(n+1)
n+1+q)

ϕn+1(xn, z
(n)
n+1+q)

≤ 1

β
(ε+ ε

q∑
k=1

βk) = ε

q+1∑
k=1

β−k.

Therefore (13) holds. Now, the relations (8) and (13) give us the following
estimation for d(zn, zn+p) with any n ≥ N0 and p ≥ 1:

d(zn, zn+p) ≤
ε
∑p
k=1 β

−k

ϕ1(zn, zn+p)
∏n
i=2 ϕi(z

(i−1)
n , z

(i−1)
n+p )

≤ ε

(β − 1)ϕ1(zn, zn+p)
∏n
i=2 ϕi(z

(i−1)
n , z

(i−1)
n+p )

≤ ε

(β − 1)
β−n.

(14)

This inequality proves the claim, i.e., {zn}n≥0 is a Cauchy sequence. Therefore,
the sequence {zn}n≥0 is convergent to some point x ∈ X. Also, from (14) one
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has

d(zn, x) ≤ ε

(β − 1)ϕ1(zn, x)
∏n
i=2 ϕi(z

(i−1)
n ,Fi−1(x))

as p→∞, for n ≥ 1.

Hence, for n ≥ N0 we get

d(Fn(x), xn) = d(fn ◦ · · · ◦ f1(x), fn ◦ · · · ◦ f1(zn))

= ϕn(Fn−1(x), zn−1n )d(fn−1 ◦ · · · ◦ f1(x), fn−1 ◦ · · · ◦ f1(zn))

...

= ϕn(Fn−1(x), zn−1n )ϕn−1(Fn−2(x), zn−2n ) · · ·ϕ1(x, zn)d(x, zn)

≤ ε

β − 1

that implies d(Fn(x), xn)→ 0 as n→∞, because ε is arbitrary. Thus the time
varying map F has the limit shadowing property.

(c) Let {xn}n≥0 be a θ-exponentially limit pseudo orbit of F with rate

θ ∈ (0, 1), i.e., d(fn+1(xn), xn+1)
θ−→ 0 as n → +∞. Hence, there exists a

constant L > 0 such that d(fn+1(xn), xn+1) ≤ Lθn for n ≥ 0. Consider the

sequence {zn}n≥0 and notation z
(k)
n given by relations (5) and (6). We claim

that {zn}n≥0 is a Cauchy sequence. Hence, by induction on p ≥ 1 we show
that the following inequality holds uniformly with respect to n ∈ N:

(15) d(xn, z
(n)
n+p) ≤ Lδn

p∑
k=1

β−k.

Indeed, for p = 1 the inequality (15) follows from (4) and (7):

d(xn, z
(n)
n+1) =

d(fn+1(xn), fn+1(z
(n)
n+1))

ϕn+1(xn, z
(n)
n+1)

=
d(fn+1(xn), xn+1)

ϕn+1(xn, z
(n)
n+1)

≤ Lδn

β
.

Assume that (15) holds for some p = q ≥ 1 uniformly on n ∈ N. Taking into
account this assumption, as well as (4), (7) and (11), we prove (15) for p = q+1:

d(xn, z
(n)
n+q+1) ≤

d(fn+1(xn), xn+1) + d(xn+1, z
(n+1)
n+1+q)

ϕn+1(xn, z
(n)
n+1+q)

≤ 1

β
(Lθn + Lθn+1

q∑
k=1

β−k)

≤ 1

β
(Lθn + Lθn

q∑
k=1

β−k) = Lθn
q+1∑
k=1

β−k.
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Therefore (15) holds. Now, the relations (8) and (15) give us the following
estimation for d(zn, zn+p) with any n ∈ N and p ≥ 1:

d(zn, zn+p) ≤
Lθn

∑p
k=1 β

−k

ϕ1(zn, zn+p)
∏n
i=2 ϕi(z

(i−1)
n , z

(i−1)
n+p )

≤ Lθn

(β − 1)ϕ1(zn, zn+p)
∏n
i=2 ϕi(z

(i−1)
n , z

(i−1)
n+p )

≤ L

(β − 1)

( θ
β

)n
.

(16)

This inequality proves the claim, i.e., {zn}n≥0 is a Cauchy sequence. Therefore,
the sequence {zn}n≥0 is convergent to some point x ∈ X. Also, from (16) one
has

d(zn, x) ≤ Lθn

(β − 1)ϕ1(zn, x)
∏n
i=2 ϕi(z

(i−1)
n ,Fi−1(x))

as p→∞, for n ≥ 1.

Hence, for n ≥ 1 we get

d(Fn(x), xn) = d(fn ◦ · · · ◦ f1(x), fn ◦ · · · ◦ f1(zn))

= ϕn(Fn−1(x), zn−1n )d(fn−1 ◦ · · · ◦ f1(x), fn−1 ◦ · · · ◦ f1(zn))

...

= ϕn(Fn−1(x), zn−1n )ϕn−1(Fn−2(x), zn−2n ) · · ·ϕ1(x, zn)d(x, zn)

≤
( L

β − 1

)
θn

that implies d(Fn(x), xn)
θ−→ 0 as n→ +∞. Thus the time varying map F has

the exponential limit shadowing property.
Finally, part (d) is a direct consequence of our process in parts (a) and (b),

which completes the proof of the theorem. �

Remark 5.8. Note that the surjectivity of maps fn of time varying map F =
{fn}n∈N in Theorem 5.7 is essential. Indeed, let X = {1} ∪ [2,+∞) be a
complete metric space endowed with the standard metric from R, and consider
the function f : X → X, f(x) = 2x for all x ∈ X. Hence f is uniformly
expanding that is not surjective. Then time varying map F = {fn}n∈N on X
with fn = f for all n ∈ N does not possess the shadowing property, for more
details see [11, Example 2.1].

Remark 5.9. Memarbashi and Rasuli in [23, Theorem 2.8] show that each uni-
formly expanding time varying map satisfies the h-shadowing property. Hence,
by Theorem 4.2, each uniformly expanding time varying map on a compact
metric space has the s-limit shadowing property, moreover it has the limit
shadowing property (under some conditions). Nevertheless, for Theorem 5.7
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we give a different proof and use it to yield the exponential limit shadowing
property, also it is useful for future studies.

Example 5.10. Let fA : Td → Td be the linear endomorphism of the torus
Td = Rd/Zd induced by some matrix A with integer coefficients and determi-
nant different from zero. Assume that all the eigenvalues λ1, λ2, . . . , λd of A
are larger than 1 in absolute value. Then, given any 1 < σ < infi |λi|, there
exists an inner product in Rd relative to which ||Av|| ≥ σ||v|| for every v ∈ Rd.
This shows that the transformation fA is expanding, see [24, Example 6.2].

Now, let A be a non-empty finite set of different matrices enjoying the above
conditions. Then, each time varying map F = {fn}n∈N with fn ∈ {fA : A ∈ A}
is uniformly expanding. Hence, by Theorem 5.7, it has the shadowing, limit
shadowing, s-limit shadowing and exponential limit shadowing properties.

In what follows, we show that any time varying map of a finite set of hy-
perbolic linear homeomorphisms on a Banach space with the same stable and
unstable subspaces has the shadowing, limit shadowing, s-limit shadowing and
exponential limit shadowing properties.

Definition 5.11. Let f : X → X be a linear homeomorphism on a Banach
space X. Then, f is said to be hyperbolic if there exist Banach subspaces
Xs, Xu ⊂ X, called stable and unstable subspaces, respectively, and a norm
‖.‖ on X compatible with the original Banach structure such that

X = Xs ⊕Xu, f(Xs) = Xs, f(Xu) = Xu, ‖f |Xs‖ < 1 and ‖f−1|Xu‖ < 1.

Theorem 5.12. Let X be a Banach space, and let A be a finite set of hyperbolic
linear homeomorphisms with the same stable and unstable subspaces. Then,
any time varying map F = {fn}n∈N with fn ∈ A has the shadowing, limit
shadowing, s-limit shadowing and exponential limit shadowing properties.

Proof. Take G = {fn|Xs}n∈N and H = {fn|Xu}n∈N. Then, obviously G is uni-
formly contracting and H is uniformly expanding on Xs and Xu, respectively.
Hence, by Theorems 5.2 and 5.7, G andH have the shadowing, limit shadowing,
s-limit shadowing and exponential limit shadowing properties. On the other
hand, F = G × H. So, by [30, Theorem 3.2] and Theorem 3.2, time varying
map F has the shadowing, limit shadowing, s-limit shadowing and exponential
limit shadowing properties. �
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