DOI QR코드

DOI QR Code

Bilin and Bilinone Chlorophyll Catabolite Content in the Hamamelidaceae Autumnal Leaves

  • Djapic, Nina (Technical Faculty "Mihajlo Pupin", University of Novi Sad)
  • Received : 2021.10.19
  • Accepted : 2022.01.12
  • Published : 2022.03.31

Abstract

In order to facilitate the quantification in autumnal Hamamelidaceae leaves, a HPLC method was used for the determination of two chlorophyll catabolites and their isomers: bilin-type (1) and bilinone-type (2) ones. The separation was done on a RP-C4 column with a gradient solvent system of 0.1% trifluoroacetic acid aqueous-methanol at the flow-rate of 0.2 mL/min and detected at 244 nm. The quantity of bilin-type (1) and bilinone-type (2) chlorophyll catabolite isomers from ten species of Hamamelidaceae autumnal leaves methanol extracts: Corylopsis pauciflora, Corylopsis spicata, Forthergilla major, Hamamelis intermedia, Hamamelis japonicum, Hamamelis japonicum var. flavopurpurscens, Hamamelis virginiana, Parrotiopsis jacquemontiana, Parrotia persica and X Sycoparrotia semidecidua were from 0.85 mg/g ~ 57.50 mg/g for bilin-type isomers (1) and 3.40 mg/g ~ 49.30 mg/g for bilinone-type isomers (2). The results obtained gave insight in quantitative bilintype (1) and bilinone-type (2) chlorophyll catabolite composition of the Hamamelidaceae plant species autumnal leaves.

Keywords

References

  1. Grimm, B .; P orra, R.; Rudiger, W.; S cheer, H .; C hlorophylls an d bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications; Springer: Dordrecht, 2006, p 1.
  2. Singh, A. K.; Rana, H. K.; Yaday, R. K.; Pandey, A. K. Recent Advances in Natural Products Analysis; Elsevier: Amsterdam, 2020, p 635.
  3. Zissis, K. D.; Brereton, R. G.; Dunkerley, S. Rapid Commun. Mass Spectrom. 1999, 13, 1755-1761. https://doi.org/10.1002/(SICI)1097-0231(19990915)13:17<1755::AID-RCM710>3.0.CO;2-3
  4. Brereton, R. G.; Rahmani, A.; Liang, Y. Z.; Kvalheim, O. M. Photochem. Photobiol. 1994, 59, 99-110. https://doi.org/10.1111/j.1751-1097.1994.tb05007.x
  5. Milenkovic, S. M.; Zvezdanovic, J. B.; Andelkovic, T. D.; Markovic, D. Z. Adv. Technol. 2012, 1, 16-24.
  6. Srivastava, L. M. Plant growth and development: Hormones and Environment; Elsevier; Oxford, 2002, p 473.
  7. Yamauchi, N.; Funamoto, Y.; Shigyo, M. Phytochem. Rev. 2004, 3, 221-228. https://doi.org/10.1023/B:PHYT.0000047796.98784.06
  8. Gonzalez-Gordo, S.; Bautista, R.; Claros, M. G.; Canas, A.; Palma, J. M.; Corpas, F. J. J. Exp. Bot. 2019, 70, 4557-4570. https://doi.org/10.1093/jxb/erz136
  9. Baker, C. J.; Orlandi, E. W. Sources and Effects of Reactive Oxygen Species in Plants; Springer: Boston, 2002, p 481.
  10. Hynninen, P. H.; Sievers, G. Z. Naturforsch. 1981, 36b, 1000-1009. https://doi.org/10.1515/znb-1981-0819
  11. Begum, H.; Yusoff, F. M.; Banerjee, S.; Khatoon, H.; Shariff, M. Crit. Rev. Food Sci. Nutr. 2016, 56, 2209-2222. https://doi.org/10.1080/10408398.2013.764841