DOI QR코드

DOI QR Code

Protein Kinase CK2 Is Upregulated by Calorie Restriction and Induces Autophagy

  • Park, Jeong-Woo (School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University) ;
  • Jeong, Jihyeon (School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University) ;
  • Bae, Young-Seuk (School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University)
  • Received : 2021.07.07
  • Accepted : 2021.11.21
  • Published : 2022.03.31

Abstract

Calorie restriction (CR) and the activation of autophagy extend healthspan by delaying the onset of age-associated diseases in most living organisms. Because protein kinase CK2 (CK2) downregulation induces cellular senescence and nematode aging, we investigated CK2's role in CR and autophagy. This study indicated that CR upregulated CK2's expression, thereby causing SIRT1 and AMP-activated protein kinase (AMPK) activation. CK2α overexpression, including antisense inhibitors of miR-186, miR-216b, miR-337-3p, and miR-760, stimulated autophagy initiation and nucleation markers (increase in ATG5, ATG7, LC3BII, beclin-1, and Ulk1, and decrease in SQSTM1/p62). The SIRT1 deacetylase, AKT, mammalian target of rapamycin (mTOR), AMPK, and forkhead homeobox type O (FoxO) 3a were involved in CK2-mediated autophagy. The treatment with the AKT inhibitor triciribine, the AMPK activator AICAR, or the SIRT1 activator resveratrol rescued a reduction in the expression of lgg-1 (the Caenorhabditis elegans ortholog of LC3B), bec1 (the C. elegans ortholog of beclin-1), and unc-51 (the C. elegans ortholog of Ulk1), mediated by kin-10 (the C. elegans ortholog of CK2β) knockdown in nematodes. Thus, this study indicated that CK2 acted as a positive regulator in CR and autophagy, thereby suggesting that these four miRs' antisense inhibitors can be used as CR mimetics or autophagy inducers.

Keywords

Acknowledgement

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (NRF-2019R1A2C1005219).

References

  1. Childs, B.G., Durik, M., Baker, D.J., and van Deursen, J.M. (2015). Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat. Med. 21, 1424-1435. https://doi.org/10.1038/nm.4000
  2. Choi, A.M., Ryter, S.W., and Levine B. (2013). Autophagy in human health and disease. N. Engl. J. Med. 368, 651-662. https://doi.org/10.1056/NEJMra1205406
  3. Cohen, H.Y., Miller, C., Bitterman, K.J., Wall, N.R., Hekking, B., Kessler, B., Howitz, K.T., Gorospe, M., de Cabo, R., and Sinclair, D.A. (2004). Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305, 390-392. https://doi.org/10.1126/science.1099196
  4. Cuervo, A.M. (2008). Autophagy and aging: keeping that old broom working. Trends Genet. 24, 604-612. https://doi.org/10.1016/j.tig.2008.10.002
  5. Gouspillou, G. and Hepple, R.T. (2013). Facts and controversies in our understanding of how caloric restriction impacts the mitochondrion. Exp. Gerontol. 48, 1075-1084. https://doi.org/10.1016/j.exger.2013.03.004
  6. Ham, H.J., Park, J.W., and Bae, Y.S. (2019). Defect of SIRT1-FoxO3a axis is associated with the production of reactive oxygen species during protein kinase CK2 downregulation-mediated cellular senescence and nematode aging. BMB Rep. 52, 265-270. https://doi.org/10.5483/BMBRep.2019.52.4.156
  7. Hanna, R.A., Quinsay, M.N., Orogo, A.M., Giang, K., Rikka, S., and Gustafsson, A.B. (2012). Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy. J. Biol. Chem. 287, 19094-19104. https://doi.org/10.1074/jbc.M111.322933
  8. Heras-Sandoval, D., Perez-Rojas, J.M., Hernandez-Damian, J., and Pedraza-Chaverri, J. (2014). The role of PI3K/AKT/mTOR pathway in the modulation of autophagy and the clearance of protein aggregates in neurodegeneration. Cell. Signal. 26, 2694-2701. https://doi.org/10.1016/j.cellsig.2014.08.019
  9. Jang, D.E., Song, J., Park, J.W., Yoon, S.H., and Bae, Y.S. (2020). Protein kinase CK2 activates Nrf2 via autophagic degradation of Keap1 and activation of AMPK in human cancer cells. BMB Rep. 53, 272-277. https://doi.org/10.5483/BMBRep.2020.53.5.044
  10. Jang, S.Y., Kim, S.Y., and Bae, Y.S. (2011). p53 deacetylation by SIRT1 decreases during protein kinase CK2 downregulation-mediated cellular senescence. FEBS Lett. 585, 3360-3366. https://doi.org/10.1016/j.febslet.2011.09.027
  11. Jeon, S.M., Lee, S.J., Kwon, T.K., Kim, K.J., and Bae, Y.S. (2010). NADPH oxidase is involved in protein kinase CKII down-regulation-mediated senescence through elevation of the level of reactive oxygen species in human colon cancer cells. FEBS Lett. 584, 3137-3142. https://doi.org/10.1016/j.febslet.2010.05.054
  12. Kang, J.Y., Kim, J.J., Jang, S.Y., and Bae, Y.S. (2009). The p53-p21Cip1/WAF1 pathway is necessary for cellular senescence induced by the inhibition of protein kinase CKII in human colon cancer cells. Mol. Cells 28, 489-494. https://doi.org/10.1007/s10059-009-0141-9
  13. Kim, S.Y., Lee, Y.H., and Bae, Y.S. (2012). miR-186, miR-216b, miR-337-3p, and miR-760 cooperatively induce cellular senescence by targeting α subunit of protein kinase CKII in human colorectal cancer cells. Biochem. Biophys. Res. Commun. 429, 173-179. https://doi.org/10.1016/j.bbrc.2012.10.117
  14. Kowaltowski, A.J. (2011). Caloric restriction and redox state: does this diet increase or decrease oxidant production? Redox Rep. 16, 237-241. https://doi.org/10.1179/1351000211y.0000000014
  15. Kwon, Y., Kim, J.W., Jeoung, J.A., Kim, M.S., and Kang, C. (2017). Autophagy is pro-senescence when seen in close-up, but anti-senescence in longshot. Mol. Cells 40, 607-612. https://doi.org/10.14348/molcells.2017.0151
  16. Lan, F., Cacicedo, J.M., Ruderman, N., and Ido, Y. (2008). SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation. J. Biol. Chem. 283, 27628-27635. https://doi.org/10.1074/jbc.M805711200
  17. Lee, Y.H., Kim, S.Y., and Bae, Y.S. (2014). Upregulation of miR-760 and miR186 is associated with replicative senescence in human lung fibroblast cells. Mol. Cells 37, 620-627. https://doi.org/10.14348/MOLCELLS.2014.0157
  18. Levine, B. and Kroemer, G. (2019). Biological functions of autophagy genes: a disease perspective. Cell 176, 11-42. https://doi.org/10.1016/j.cell.2018.09.048
  19. Litchfield, D.W. (2003). Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem. J. 369, 1-15. https://doi.org/10.1042/BJ20021469
  20. Lopez-Lluch, G. and Navas, P. (2016). Calorie restriction as an intervention in ageing. J. Physiol. 594, 2043-2060. https://doi.org/10.1113/JP270543
  21. Luo, J., Mills, K., le Cessie, S., Noordam, R., and van Heemst, D. (2020). Ageing, age-related diseases and oxidative stress: what to do next? Ageing Res. Rev. 57, 100982. https://doi.org/10.1016/j.arr.2019.100982
  22. Madeo, F., Carmona-Gutierrez, D., Hofer, S.J., and Kroemer, G. (2019). Caloric restriction mimetics against age-associated disease: targets, mechanisms, and therapeutic potential. Cell Metab. 29, 592-610. https://doi.org/10.1016/j.cmet.2019.01.018
  23. Mammucari, C., Milan, G., Romanello, V., Masiero, E., Rudolf, R., Del Piccolo, P., Burden, S.J., Di Lisi, R., Sandri, C., Zhao, J., et al. (2007). FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab. 6, 458-471. https://doi.org/10.1016/j.cmet.2007.11.001
  24. McHugh, D. and Gil, J. (2018). Senescence and aging: causes, consequences, and therapeutic avenues. J. Cell Biol. 217, 65-77. https://doi.org/10.1083/jcb.201708092
  25. Mirouse, V. and Billaud, M. (2011). The LKB1/AMPK polarity pathway. FEBS Lett. 585, 981-985. https://doi.org/10.1016/j.febslet.2010.12.025
  26. Park, J.H., Kim, J.J., and Bae, Y.S. (2013). Involvement of PI3K-AKT-mTOR pathway in protein kinase CKII inhibition-mediated senescence in human colon cancer cells. Biochem. Biophys. Res. Commun. 433, 420-425. https://doi.org/10.1016/j.bbrc.2013.02.108
  27. Park, J.H., Lee, J.H., Park, J.W., Kim, D.Y., Hahm, J.H., Nam, H.G., and Bae, Y.S. (2017). Downregulation of protein kinase CK2 activity induces age-related biomarkers in C. elegans. Oncotarget 8, 36950-36963. https://doi.org/10.18632/oncotarget.16939
  28. Park, J.W., Kim, J.J., and Bae, Y.S. (2018). CK2 downregulation induces senescence-associated heterochromatic foci formation through activating SUV39h1 and inactivating G9a. Biochem. Biophys. Res. Commun. 505, 67-73. https://doi.org/10.1016/j.bbrc.2018.09.099
  29. Park, S.Y. and Bae, Y.S. (2016). Inactivation of the FoxO3a transcription factor is associated with the production of reactive oxygen species during protein kinase CK2 downregulation-mediated senescence in human colon cancer and breast cancer cells. Biochem. Biophys. Res. Commun. 478, 18-24. https://doi.org/10.1016/j.bbrc.2016.07.106
  30. Ravanan, P., Srikumar, I.F., and Talwar, P. (2017). Autophagy: the spotlight for cellular stress responses. Life Sci. 188, 53-67. https://doi.org/10.1016/j.lfs.2017.08.029
  31. Ryu, S.W., Woo, J.H., Kim, Y.H., Lee, Y.S., Park, J.W., and Bae, Y.S. (2006). Downregulation of protein kinase CKII is associated with cellular senescence. FEBS Lett. 580, 988-994. https://doi.org/10.1016/j.febslet.2006.01.028
  32. Sahani, M.H., Itakura, E., and Mizushima, N. (2014). Expression of the autophagy substrate SQSTM1/p62 is restored during prolonged starvation depending on transcriptional upregulation and autophagy-derived amino acids. Autophagy 10, 431-441. https://doi.org/10.4161/auto.27344
  33. Salminen, A. and Kaarniranta, K. (2012). AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res. Rev. 11, 230-241. https://doi.org/10.1016/j.arr.2011.12.005
  34. Sinclair, D.A. (2005). Toward a unified theory of caloric restriction and longevity regulation. Mech. Ageing Dev. 126, 987-1002. https://doi.org/10.1016/j.mad.2005.03.019
  35. Song, J. and Bae, Y.S. (2021). CK2 down-regulation increases the expression of senescence-associated secretory phenotype factors through NF-κB activation. Int. J. Mol. Sci. 22, 406. https://doi.org/10.3390/ijms22010406
  36. Testa, G., Biasi, F., Poli, G., and Chiarpotto, E. (2014). Calorie restriction and dietary restriction mimetics: a strategy for improving healthy aging and longevity. Curr. Pharm. Des. 20, 2950-2977. https://doi.org/10.2174/13816128113196660699
  37. Yu, W., Zhou, H.F., Lin, R.B., Fu, Y.C., and Wang, W. (2014). Short-term calorie restriction activates SIRT1-4 and -7 in cardiomyocytes in vivo and in vitro. Mol. Med. Rep. 9, 1218-1224. https://doi.org/10.3892/mmr.2014.1944
  38. Zhao, J., Brault, J.J., Schild, A., Cao, P., Sandri, M., Schiaffino, S., Lecker, S.H., and Goldberg, A.L. (2007). FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab. 6, 472-483. https://doi.org/10.1016/j.cmet.2007.11.004