DOI QR코드

DOI QR Code

Flavokawain B and C, Isolated from the Root of Piper methysticum, Inhibit Melanogenesis in Melan-a Cells

Piper methysticum 의 뿌리로부터 추출한 Flavokawain B와 C가 Melan-a 세포에서 멜라닌 합성에 미치는 영향

  • Ryu, Jong Hyuk (AMOREPACIFIC Corporation, Research and Innovation Center) ;
  • Lee, Jeong Ah (Department of Genetic Engineering & Graduate School of Biotechnology, Kyung Hee University) ;
  • Ko, Jae Young (AMOREPACIFIC Corporation, Research and Innovation Center) ;
  • Hwang, Jae Sung (AMOREPACIFIC Corporation, Research and Innovation Center)
  • 류종혁 (아모레퍼시픽, R&I 센터) ;
  • 이정아 (경희대학교 생명공학원 유전공학과) ;
  • 고재영 (아모레퍼시픽, R&I 센터) ;
  • 황재성 (아모레퍼시픽, R&I 센터)
  • Received : 2022.03.08
  • Accepted : 2022.03.23
  • Published : 2022.03.30

Abstract

It has been reported that the ethanolic extract of the root of Piper methysticum (P. methysticum) inhibits melanogenesis in melanocyte stimulating hormone (MSH)-activated B16 melanoma cells. Flavokawain B (FKB) and Flavokawain C (FKC) isolated from this extract have been found to inhibit melanin production based on anti-melanogenesis activity. This study was designed to find out the inhibition and its process of FKB and FKC on melanin synthesis in melan-a melanocytes. FKB and FKC inhibited melanogenesis at 10 μM, 5 μM respectively in melan-a melanocytes. However, they did not inhibit extracellular tyrosinase activity from melan-a melanocytes. FKB reduced the protein level of tyrosinase (Tyr), tyrosinase-related protein 1 (TRP-1), tyrosinase-related protein 2 (TRP-2), microphthalmia-associated transcription factor (MITF) and the mRNA level of Tyr and TRP-1. FKC reduced the protein level of TRP-2 and MITF and the mRNA level of TRP-1 and Tyr. The reduced expression of Tyr and TRP-1 might be resulted from the decreased MITF which regulates major melanogenic proteins. However, since the mRNA expression of MITF did not change by FKB and FKC treatment, the effects of FKB and FKC on extracellular signal regulating kinase (ERK)/AKT phosphorylation, known to regulate the degradation of MITF, were confirmed. FKB and FKC significantly increased the phosphorylation of ERK1/2, not in AKT. These results suggest that FKB and FKC may be helpful as a potential depigmenting agent for various hyper-pigmentary disorders.

Piper methysticum 뿌리의 에탄올 추출물은 멜라닌 세포 자극 호르몬 활성화 B16 흑색종 세포에서 멜라닌 생성을 억제하는 것으로 알려져 왔다. 이 추출물로부터 분리한 flavokawain B (FKB)와 flavokawain C (FKC)는 항멜라닌 생성 활성을 기반으로 멜라닌 생성을 억제하는 것으로 밝혀져 있다. 본 연구는 melan-a 세포에서의 멜라닌 합성에 대한 FKB 및 FKC의 억제 및 그 과정을 알아보고자 하였다. FKB와 FKC는 각각 10 μM, 5 μM 농도에서 melan-a 세포의 멜라닌 생성을 억제하였다. 그러나 FKB와 FKC 모두 세포 외 타이로시네이즈 활성은 억제하지 않았다. FKB는 타이로시네이즈 (tyrosinase, Tyr), 타이로시네이즈 연관 단백질 1 (tyrosinaserelated protein 1, TRP-1)과 2(tyrosinase-related protein 2, TRP-2), microphthalmia-associated transcription factor (MITF)의 단백질 발현량을 감소시켰으며 Tyr와 TRP-1의 mRNA 발현량을 감소시켰다. FKC는 TRP-2와 MITF의 단백질 발현량을 감소시켰으며 Tyr와 TRP-1의 mRNA 발현량을 감소시켰다. Tyr와 TRP-1의 감소된 발현은 주요 멜라닌 생성 단백질을 조절하는 MITF발현 감소로 인한 것임을 예상할 수 있었다. 다만 MITF의 mRNA 발현량은 FKB와 FKC 처리에 의해 변하지 않았기 때문에, MITF의 분해를 조절한다고 알려진 세포 외 신호 조절 키나아제(ERK)/AKT 인산화에 대한 FKB와 FKC의 영향을 확인하였다. FKB와 FKC는 AKT의 인산화를 증가시키지는 않았지만 ERK1/2의 인산화를 유의미하게 증가시켰다. 이러한 결과는 FKB와 FKC가 다양한 색소 침착 증상들에 대한 잠재적인 미백제로 도움이 될 수 있음을 말해준다.

Keywords

References

  1. M. Cichorek, M. Wachulska, A. Stasiewicz, and A. Tyminska, Skin melanocytes: biology and development, Postepy Dermatol Allergol., 30(1), 30 (2013).
  2. H. Park, M. Kosmadaki, M. Yaar, and B. Gilchrest, Cellular mechanisms regulating human melanogenesis, Cell. Mol. Life Sci., 66(9), 1493 (2009). https://doi.org/10.1007/s00018-009-8703-8
  3. J. W. Yoon, J. M. Han, H. J. Yoon, and W. S. Ko, Inhibitory effects of methanol extract of Kaempferia galanga on melanogenesis in B16/F10 melanoma cells, J. Korean Med. Ophthalmol. Otolaryngol. Dermatol., 26(1), 1 (2013). https://doi.org/10.6114/JKOOD.2013.26.1.001
  4. Y. Lee, B. Ku, D. Kim, and E. M. Choi, Umbelliferone stimulated melanogenesis and increased glutathione level in B16F10 cells, Toxicol. Environ. Health Sci., 9(1), 152 (2017). https://doi.org/10.1007/s13530-017-0316-2
  5. Y. N. Singh., Kava, an overview, J. Ethnopharmacol., 37(1), 13 (1992). https://doi.org/10.1016/0378-8741(92)90003-A
  6. H. J. Jeong, C. S. Lee, J. Choi, Y. D. Hong, S. S. Shin, J. S. Park, J. H. Lee, S. Lee, K. D. Yoon, and J. Ko, Flavokawains B and C, melanogenesis inhibitors, isolated from the root of Piper methysticum and synthesis of analogs, Bioorg. Med. Chem. Lett., 25(1), 799 (2015). https://doi.org/10.1016/j.bmcl.2014.12.082
  7. V. J. Hearing, Biogenesis of pigment granules: A sensitive way to regulate melanocyte function, J. Dermatol. Sci., 37(1), 3 (2005). https://doi.org/10.1016/j.jdermsci.2004.08.014
  8. V. J. Hearing and M. Jimenez, Analysis of mammalian pigmentation at the molecular level, Pigment Cell Res, 2(2), 75 (1989). https://doi.org/10.1111/j.1600-0749.1989.tb00166.x
  9. I. F. dos Santos Videira, D. F. Lima Moura, and S. Magina, Mechanisms regulating melanogenesis, An. Bras. Dermatol., 88(1), 76 (2013). https://doi.org/10.1590/S0365-05962013000100009
  10. V. J. Hearing and K. Tsukamoto, Enzymatic control of pigmentation in mammals, FASEB. J., 5(14), 2902 (1991). https://doi.org/10.1096/fasebj.5.14.1752358
  11. P. M. Plonka, B. Handjiski, D. Michalczyk, M. Popik, and R. Paus, Oral zinc sulphate causes murine hair hypopigmentation and is a potent inhibitor of eumelanogenesis in vivo, Br. J. Dermatol., 155(1), 39 (2006). https://doi.org/10.1111/j.1365-2133.2006.07376.x
  12. K. Yasumoto, K. Yokoyama, K. Shibata, Y. Tomita, and S. Shibahara, Microphthalmia-associated transcription factor as a regulator for melanocyte-specific transcription of the human tyrosinase gene, Mol. Cell. Biol., 14(12), 8058 (1994). https://doi.org/10.1128/MCB.14.12.8058
  13. R. Busca, P. Abbe, F. Mantoux, E. Aberdam, C. Peyssonnaux, A. Eychene, J. P. Ortonne, and R. Ballotti, Ras mediates the cAMP-dependent activation of extracellular signal-regulated kinases (ERKs) in melanocytes, EMBO. J., 19(12), 2900 (2000). https://doi.org/10.1093/emboj/19.12.2900
  14. R. B usca a nd R . Ballotti, Cyclic AMP a k ey m essenger in the regulation of skin pigmentation, Pigment Cell Res., 13(2), 60 (2000). https://doi.org/10.1034/j.1600-0749.2000.130203.x
  15. O. Nerya, J. Vaya, R. Musa, S. Izrael, R. Ben-Arie, and S. Tamir, Glabrene and isoliquiritigenin as tyrosinase inhibitors from licorice roots, J. Agric. Food Chem., 51(5), 1201 (2003). https://doi.org/10.1021/jf020935u
  16. J. H. Lee, E. S. Lee, I. H. Bae, J. A. Hwang, S. H. Kim, D. Y. Kim, N. H. Park, H. S. Rho, Y. J. Kim, S. G. Oh, and C. S. Lee, Antimelanogenic efficacy of melasolv (3,4,5-trimethoxycinnamate thymol ester) in melanocytes and three-dimensional human skin equivalent, Skin Pharmacol. Physiol., 30(4), 190 (2017). https://doi.org/10.1159/000477356
  17. J. S. Hwang, Ph. D. Dissertaion, Ajou Univ., Suwon, Korea (2003).
  18. K. Maeda and M. Fukuda, In vitro effectiveness of several whitening cosmetic components in human melanocytes, J. Soc. Cosmet. Chem., 42(1), 361 (1991).
  19. B. Fu, H . Li, X. Wang, F. S. C. Lee, and S. Cui, Isolation and identification of flavonoids in licorice and a study their inhibitory effects on tyrosinase, J. Agric. Food Chem., 53(19), 7408 (2005). https://doi.org/10.1021/jf051258h
  20. A. J. McEvily, R. Iyengar, and W. S. Otwell, Inhibition of enzymatic browning in foods and beverages, Crit. Rev. Food Sci. Nutr., 32(3), 253 (1992). https://doi.org/10.1080/10408399209527599
  21. H. J. Kim, J. H. Lee, M. K. Shin, K. H. Lee, Y. J. Kim, and M. H. Lee, Inhibitory effect of Gastrodia elata extract on melanogenesis in HM3KO melanoma cells, J. Cosmet. Sci., 64(2), 89 (2013).
  22. P. Aroca, K. Urabe, T. Kobayashi, K. Tsukamoto, and V. J. Hearing, Melanin biosynthesis patterns following hormonal stimulation, J. Biol. Chem., 268(34), 25650 (1993). https://doi.org/10.1016/S0021-9258(19)74439-1
  23. P. Chen, S. Pang, N. Yang, H. Meng, J. Liu, N. Zhou, M. Zhang, Z. Xu, W. Gao, B. Chen, Z. Tao, L. Wang, and Z. Yang, Beneficial effects of schisandrin B on the cardiac function in mice model of myocardial infarction, PLoS One., 8(11), e79418 (2013). https://doi.org/10.1371/journal.pone.0079418
  24. G. A. Cordell and M. D. Colvard, Natural products and traditional medicine: turning on a paradigm, J. Nat. Prod., 75(3), 514 (2012). https://doi.org/10.1021/np200803m
  25. T. H. Lee, J. O. Seo, S. H. Baek, and S. Y. Kim, Inhibitory effects of resveratrol on melanin synthesis in ultraviolet B-induced pigmentation in guinea pig skin, Biomol. Ther. (Seoul), 22(1), 35 (2014). https://doi.org/10.4062/biomolther.2013.081
  26. T. R. Su, J. J. Lin, C. C. Tsai, T. K. Huang, Z. Y. Yang, M. Wu, Y. Q. Zheng, C. C. Su, and Y. J. Wu, Inhibition of melanogenesis by gallic acid: possible involvement of the PI3K/Akt, MEK/ERK and Wnt/β-catenin signaling pathways in B16F10 cells, Int. J. Mol. Sci., 14(10), 20443 (2013). https://doi.org/10.3390/ijms141020443
  27. I. Yajima, M.Y. Kumasaka, N. D. Thang, Y. Goto, K. Takeda, O. Yamanoshita, M. Iida, N. Ohgami, H. Tamura, Y. Kawamoto, and M. Kato, RAS/RAF/MEK/ERK and PI3K/PTEN/AKT signaling in malignant melanoma progression and therapy, Dermatol. Res. Pract., 2012(1), 354191 (2012).
  28. J. K. Chae, L. Subedi, M. Jeong, Y. U. Park, C. Y. Kim, H. Kim, and S. Y. Kim, Gomisin N inhibits melanogenesis through regulating the PI3K/AKT and MAPK/ERK signaling pathways in melanocytes, Int. J. Mol. Sci., 18(2), 471 (2017). https://doi.org/10.3390/ijms18020471
  29. H. J. Kim, I. S. Kim, Y. Dong, I. S. Lee, J. S. Kim, J. S. Kim, J. T. Woo, and B. Y. Cha, Melanogenesisinducing effect of cirsimaritin through increases in microphthalmia-associated transcription factor and tyrosinase expression, Int. J. Mol. Sci., 16(4), 8772 (2015). https://doi.org/10.3390/ijms16048772
  30. J. H. Kim, S. H. Baek, D. H. Kim, T. Y. Choi, T. J. Yoon, J. S. Hwang, M. R. Kim, H. J. Kwon, and C. H. Lee, Downregulation of melanin synthesis by haginin A and its application to in vivo lightening model, J. Invest. Dermatol., 128(5), 1227 (2008). https://doi.org/10.1038/sj.jid.5701177
  31. M. L. Hartman and M. Czyz, MITF in melanoma: mechanisms behind its expression and activity, Cell. Mol. Life Sci., 72(7), 1249 (2015). https://doi.org/10.1007/s00018-014-1791-0
  32. D. S. Kim, E. S. Hwang, J. E. Lee, S. Y. Kim, S. B. Kwon, and K. C. Park, Sphingosine-1-phosphate decreases melanin synthesis via sustained ERK activation and subsequent MITF degradation, J. Cell Sci., 116(Pt 9), 1699 (2003). https://doi.org/10.1242/jcs.00366