DOI QR코드

DOI QR Code

Morphological characteristics of Neural Tissue and Corazonin Neurons of Central Nervous System in Larval Stage of Scuttle Fly

  • Hohyun, Park (Department of Biomedical Laboratory Science, Mokpo Science University)
  • 투고 : 2022.11.14
  • 심사 : 2022.12.12
  • 발행 : 2022.12.31

초록

Through previous studies, the central nervous system (CNS) was collected by dividing the scuttle fly into larval, pupa, and adult stages by developmental stage, and the morphological characteristics were observed. In situ hybridization (ISH) using the collected central nervous system, it was possible to confirm the location and extent of expression of the neurotransmitter corazonin (Crz) at each stage of development. In this study, paraffin specimens were prepared using central nervous system tissues of 3rd instar larval stage of scuttle fly, which had completed in situ hybridization, and general histochemical staining (hematoxylin-eosin, H-E) and special histochemical staining (luxol fast blue-cresyl violet) was performed to observe the histological and cytological morphology characteristics of corazonin neurons. As a result, a variety of nerve cell body existed between many myelin sheath. The corazonin neurons compose cortex of central nervous system with other neurons congregating in this tissue and show larger cell body relatively in neurohistochemical analysis.

키워드

과제정보

This study was supported by reserch fund Mokpo Science University, 2022.

참고문헌

  1. Bancroft JD, Gamble M. Theory and Practice of Histological Techniques. 6th ed. Oxford: Churchill Livingstone Elsevier. 2008. 378.
  2. Bracegirdle B. The history of staining. Chapter 2 in: Horobin RW, Kiernan JA (eds.). Conn's Biological Stains. 10th ed. Oxford, BIOS Scientific Publishers Ltd. 2002. 15-22.
  3. Cantera R, Veenstra JA, Nassel DR. Post-embryonic development of Corazonin-containing neurons and neruosecretory cells in the Blowfly, Phormia terraenovae. J Comp Neurol. 1994. 350: 559-572. https://doi.org/10.1002/cne.903500405
  4. Cardon D. Natural Dyes: Sources, Tradition, Technology and Science. Archetype Publications, London. 2007. pp 263-274.
  5. Carson FL, Hladik C. Histotechnology: A Self-Instructional Text. 3rd ed. Chicago, Ill.: American Society of Clinical Pathologists. 2009. 214-215.
  6. Choi SH. "The Regulation of Neuropeptide Corazonin and Its Functional Analyses in Drosophila melanogaster." PhD diss., University of Tennessee. 2009.
  7. Choi SH, Lee G, Monahan P, Park JH. Spatial regulation of Corazonin neuropeptide expression requires multiple cis-acting elements in Drosophila melanogaster. J Comp Neurol. 2008. 507: 1184-1195. https://doi.org/10.1002/cne.21594
  8. Choi YJ, Lee G, Park JH. Programmed cell death mechanisms of identifiable peptidergic neurons in Drosophila melanogaster. Development. 2006. 133: 2223-2232. https://doi.org/10.1242/dev.02376
  9. Choi YJ, Lee G, Hall JC, Park JH. Comparative analysis of Corazonin-encoding genes (Crz's) in Drosophila species and functional insights into Crz-expressing neurons. J Comp Neurol. 2005. 482: 372-385. https://doi.org/10.1002/cne.20419
  10. Gill GW. Gill hematoxylins-first person account. Biotechnic & Histochemistry. 2009. 84: 1-12. https://doi.org/10.1080/10520290802646619
  11. Hansen IA, Sehnal F, Meyer SR, Scheller K. Corazonin gene expression in the waxmoth Galleria mellonella. Insect Mol Biol. 2001. 10: 341-346. https://doi.org/10.1046/j.0962-1075.2001.00272.x
  12. Kluver H, Barrera E. "A Method for the Combined Staining of Cells and Fibers in the Nervous System." Journal of Neuropathology and Experimental Neurology. 1953. 12: 400-403. https://doi.org/10.1097/00005072-195312040-00008
  13. Lee G, Kim KM, Kikuno K, Wang Z, Choi YJ, Park JH. Developmental regulation and functions of the expression of the neuropeptide corazonin in Drosophila melanogaster. Cell Tissue Res. 2008. 331: 659-673.
  14. Lee G, Wang Z, Sehgal R, Chen CH, Kikuno K, Hay B, Park JH. Drosophila caspases involved in developmentally regulated programmed cell death of peptidergic neurons during early metamorphosis. J Comp Neurol. 2011. 519: 34-48. https://doi.org/10.1002/cne.22498
  15. Luna LG. Histopathologic Methods and Color Atlas of Special Stains and Tissue Artifacts. Gaitheresburg, MD: American Histolabs. 1992. 494-495.
  16. Park HH. The Expression of Corazonin Neurons in Larvae Stage of Scuttle Fly. Biomedical Laboratory Sciences. 2020. 26: 1-9.
  17. Park HH. The Expression of Corazonin Neurons in Pupa and Adult Stage of Scuttle Fly. Biomedical Laboratory Sciences. 2021. 27: 239-247.
  18. Porras MG, De Loof A, Breuer M, Arechiga H. Corazonin promotes tegumentary pigment migration in the crayfish Procambarus clarkii. Peptides. 2003. 24: 1581-1589. https://doi.org/10.1016/j.peptides.2003.08.016
  19. Roller L, Tanaka S, Kimura K, Satake H, Tanaka Y. Molecular cloning of [Thr4, His7]-corazonin(Apime-corazonin) and its distribution in the central nervous system of the honey bee Apis mellifera (Hymenoptera; Apidae). Appl Entomol Zool. 2006. 41: 331-338. https://doi.org/10.1303/aez.2006.331
  20. Roller L, Tanaka Y, Tanaka S. Corazonin and corazonin-like substances in the central nervous system of the Pterygote and Apterygote insects. Cell Tissue Tes. 2003. 312: 393-406. https://doi.org/10.1007/s00441-003-0722-4
  21. Shiga S, Davis NT, Hildebrand JG. Role of neurosecretory cells in the photoperiodic induction of pupal diapause of the tobacco hornworm Manduca sexta. J Comp Neurol. 2003. 462: 275-285. https://doi.org/10.1002/cne.10683
  22. Tanaka S. Endocrine mechanism of controlling body-color polymorphism in locusts. Arch Insect Biochem Physiol. 2001. 47: 139-149. https://doi.org/10.1002/arch.1045
  23. Tanaka S, Zhu DH, Hoste B, Breuer M. The dark-color inducing neuropoptide, His7-corazonin, causes a shift in morphometric characteristics towards the gregarious phase in isolated-reared (solitarious) Locusta migratoria. J Insect Physiol. 2002a. 48: 1065-1074. https://doi.org/10.1016/S0022-1910(02)00199-3
  24. Tawfik AI, Tanaka S, De Loof A, Schoofs L, Baggerman G, Waelkens E, Derua R, Milner Y, Yerushalmi Y, Pener MP. Identification of the gregarization - associated dark - pigmentotropin in locusts through an albino mutant. Proc Natl Acad Sci U S A. 1999. 96: 7083-7087. https://doi.org/10.1073/pnas.96.12.7083
  25. Tayler TD, Pacheco DA, Hergarden AC, Murthy M, Anderson DJ. A neuropeptide circuit that coordinates sperm transfer and copulation duration in Drosophila. Proc Natl Acad Sci U S A. 2012. 109: 20697-20702. https://doi.org/10.1073/pnas.1218246109
  26. Titford M. The long history of hematoxylin. Biotech Histochem. 2005. 80: 73-78. https://doi.org/10.1080/10520290500138372
  27. Veenstra JA. Isolation and structure of corazonin, a cardio-active peptide from the America cockroach. FEBS Lett. 1989. 250: 231-234. https://doi.org/10.1016/0014-5793(89)80727-6
  28. Veenstra JA. Presence of corazonin in three insect species, and isolation and identification of [His7] corazonin from Schistocerca americana. Peptides. 1991. 12: 1285-1289. https://doi.org/10.1016/0196-9781(91)90208-7
  29. Veenstra JA. Does Corazonin signal nutritional stress in insects? Insect Biochem Mol Biol. 2009. 39: 755-762. https://doi.org/10.1016/j.ibmb.2009.09.008
  30. Veenstra JA, Davis NT. Localization of corazonin in the nervous system of the cockroach Periplaneta americana. Cell Tissue Res. 1993. 274: 57-64. https://doi.org/10.1007/BF00327985
  31. Verleyen P, Baggerman G, Mertens I, Vandersmissen T, Huybrechts J, Van Lommel A, De Loof A, Schoofs L. Cloning and characterization of a third isoform of corazonin in the honey bee Apis mellifera. Peptides. 2006. 27: 493-499. https://doi.org/10.1016/j.peptides.2005.03.065
  32. William K, Ovalle, Patrick C, Nahirney. Netter's Essential Histology. Elsevier Health Sciences. 2013.
  33. Yerushalmi YK, Bhargava C, Gilon, Pener MP. Structure-activity relations of the dark-colour-inducing neurohormone of locusts. Insect Biochem Mol Biol. 2002. 32: 909-917. https://doi.org/10.1016/S0965-1748(01)00180-1