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Introduction 

Newcastle disease (ND) is one of the most critical infectious diseases in domes-
tic and wild birds [1]. Generally, ND primarily causes acute respiratory disease; 
however, it can also lead to depression, nervous manifestations, and diarrhea [2]. 
ND virus (NDV) or Avian paramyxoviruses 1 (APMV-1) was recently classified to 
Family Paramyxoviridae, Genus Avian Orthoavulavirus and common NDV is re-
cently known as Avian Orthoavulavirus-1 (AOAV-1) [3]. Although only a single 
serotype of NDV has been found to be exist as determined using neutralizing tests 
and cross-protective analysis [4,5], the virus can be categorized into 2 major class-
es based on phylogenetic analysis of the fusion (F) gene sequence, i.e., Classes I 
and II [3]. Moreover, Kapczynski et al. [6] reported that NDV is constantly evolv-
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Abstract

Vaccination against Newcastle disease (ND) is the most effective means of con-
trolling the disease, and these vaccines are commercialized only after their safety 
and effectiveness have been verified through tests that comply with Korean Stan-
dards of National Lot Release for Veterinary Biologics. This study investigated 
whether a relatively convenient and safe serological test can be used in place of the 
challenge test using highly virulent ND virus. Hemagglutination inhibition (HI) as-
say and enzyme-linked immunosorbent assay (ELISA) were considered positive of 
log2 2 or more and cutoff value of 200 or more, respectively, in both live and inacti-
vated vaccines. However, when the antibody levels of the live and inactivated vac-
cines induced using the Ulster 2C, KBNP-C4152R2L, and K148/08 strains were 
compared, the antibody titers for inactivated vaccines were significantly higher than 
those for live vaccines in both the HI assay and ELISA. A strong positive correlation 
was observed between HI and ELISA antibody titers. The live vaccines correspond-
ed to a survival rates of ≥ 80% and the inactivated vaccines corresponded to 100% 
survival rates. This study confirmed that standard efficacy tests can serve as sero-
logical tests, and can replace the challenge test and that the vaccine approval process 
can be improved. 

Keywords: Newcastle disease; serological tests; Newcastle disease virus; vaccine ef-
ficacy; vaccines
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ing and that it can be classified into more than 21 phylogeneti-
cally distinct genotypes as per epidemiological evidence. Class I 
NDVs are genetically less diverse, are present in wild waterfowl, 
and have low virulence; in contrast, Class II NDVs are more di-
verse, frequently isolated from poultry with occasional spill-
overs into wild birds, and have a wide range of virulence. More-
over, Class II NDV can be subdivided into 21 genotypes [1,4,7]. 

Generally, virulent NDV can be defined as NDV with an in-
tracerebral pathogenicity index of ≥  0.7 in 1-day-old chicks or 
multiple basic amino acids at the cleavage site of the virus F 
protein, according to the World Organisation for Animal 
Health (OIE) [8]. NDV isolates can be classified into 3 major 
pathological types based on virulence: velogenic (high viru-
lence), mesogenic (moderate virulence), and lentogenic (low 
virulence) [9]. Velogenic NDV can be subdivided into viscero-
tropic velogenic NDV (vvNDV), which causes severe visceral 
and intestinal hemorrhage, and neurotropic velogenic NDV, 
which presents with severe neurologic clinical signs, depending 
on the clinical signs in chicken behavior [10]. ND is one of the 
damaging diseases among chickens, and it has a significant 
global economic impact worldwide [11]. Moreover, there are no 
reports of treatment of ND and no antiviral drugs are commer-
cially available. 

Vaccination against ND is the most effective means of con-
trolling the disease, and this method is practiced in most coun-
tries producing commercial and backyard poultry except Ire-
land, Norway, Switzerland or Sweden [12–14]. In Korea, vacci-
nation against ND has been mandatory in hatcheries and poul-
try farms since 2001; consequently, no ND outbreaks have oc-
curred since 2010 [15]. However, ND vaccination is still being 
used for prevention of outbreaks in the future. These vaccines 

are commercialized only after their safety and effectiveness have 
been verified through tests that comply with Korean Standards 
of National Lot Release for Veterinary Biologics [16]. Although 
vaccine validation is currently performed as a challenge test in 
chickens using the highly virulent NDV, this study investigated 
whether a relatively convenient and safe serological test can be 
used in place of the challenge test. 

Materials and Methods 

Experimental animals and NDV vaccine 
Overall, 11 NDV vaccines from 6 manufacturers were tested 

(Table 1). The age of the test animals and the dose and inocula-
tion route of the vaccines for evaluating vaccine strains were in 
accordance with the Korean Standards of National Lot Release 
for Veterinary Biologics [16] and the manufacturers’ recom-
mendations. Namely, 6 vaccine strains among 7 live vaccine 
strains were inoculated by spray route using an automatic spray 
device (SKmos2009; Samkwang, Korea) in each of the 25 1-day-
old specific-pathogen-free (SPF) chickens (Namduck SPF, Ko-
rea). The other live vaccine strains were inoculated by orally us-
ing a 1-mL syringe in 10 3-weeks-old and 10 6-weeks-old SPF 
chickens, respectively. Four inactivated vaccine strains were in-
tramuscularly injected into 25 6-weeks-old SPF chickens. All 
experiments were performed thrice, and the mean outcomes 
were considered. The vaccinated and control groups were 
placed in separate isolation units throughout the study. All pro-
cedures in this study were conducted in accordance with the In-
stitutional Animal Care and Use Committee (IACUC), APQA 
(approval ID: 2019-452). 

Table 1. Experimental design with live and inactivated Newcastle disease vaccines

Type of vaccine NDV strain Pathotype Dose(log10EID50)
a) Manufacturer Inoculation route

Live B1 l 6.5 F Drinking water
CBU2179 l 6 D Spray
KBNP-C4152R2L a 6 C Spray
PHY.LMV.42 a 6 E Spray
NDRL0901 a 6 D Spray
K148/08 a 6 A Spray
Ulster 2C a 5.0–6.0 B Spray

Inactivated KBNP-C4152R2L a 9.5 C IM
K148/08 a 9.5 A IM
Ulster 2C a 8.5 B IM
Lasota l 9.0–9.5 A IM

NDV, Newcastle disease virus; l, lentogenic; a, asymptomatic; IM, intramuscular injection.
a)50% Percent egg infectious dose.
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Serum collection 
To detect NDV antibodies, blood samples from the different 
groups administrated with the live (n =  10/group) and inacti-
vated (n =  10/group) NDV vaccines were collected at 2 and 3 
weeks after immunization, respectively, based on Korean Stan-
dards of National Lot Release for Veterinary Biologics [16]. Se-
rum was separated and subjected to heat-induced inactivation 
at 56°C for 30 min. The samples were stored at –20°C until fur-
ther analysis. 

Challenge experiment 
The vvNDV strain Kr005 was used as the challenge virus in 

this study [17]. To determine the concentration of Kr005, 50% 
egg infectious dose (EID50) was measured using the Reed-
Muench method [18]. Virus challenge involved intramuscular 
injection of Kr005 (1 ×  105 EID50/0.5 mL) at 2 and 3 weeks after 
the administration of live and inactivated vaccines, respectively. 
The challenged chickens were observed daily for clinical signs, 
mortality for 2 weeks. 

Hemagglutination inhibition assays 
Hemagglutination inhibition (HI) assay was performed using 

U-bottomed 96-well microtiter plates as recommended by the 
OIE manual of standard diagnostic tests [8]. The assay was per-
formed using 4 hemagglutination units of the NDV LaSota an-
tigen. The endpoint was the reciprocal of the highest serum di-
lution that completely inhibited hemagglutination. HI titers 
were also expressed as log2.

Enzyme-linked immunosorbent assay 
Indirect enzyme-linked immunosorbent assay (ELISA) was 

conducted to detect NDV antibodies in the serum samples us-
ing a commercial ELISA kit (MEDIAN Diagnostics Inc., Korea) 
according to the manufacturer’s instructions. An absorbent 450-
nm filter was used to calculate the sample-to-positive (S/P) ra-
tio of each sample using an ELISA microplate reader (Molecular 
Devices, USA). The presence or absence of antibodies against to 
NDV was determined by correlating the absorbance value of 
the sample to the positive control mean, and positive was indi-
cated by an S/P ratio of >  0.2. The ELISA titer (log titer) was 
calculated as 1.8 (log S/P) + 3.56. 

Statistical analyses 
GraphPad Prism ver. 9.0 (GraphPad Software Inc., USA) was 

used for all statistical analyses. To compare the serological re-
sponse and analyze the relationship between the antibody titers 
and the survival rate, independent-sample t-test and Pearson 
two-tailed analysis were performed. A p-value of <  0.0001 was 
considered statistically significant. 

Results 

Serological response the SPF chickens to NDV vaccine 
The serological response of the chickens to the vaccine strains 

is presented in Fig. 1. The HI assay results revealed that the 
mean antibody titers against the live vaccine strains ranged 
from log2 4.7 ±  1.6 to log2 6.4 ±  1.7, whereas those against the 

Fig. 1. Serological responses between chickens vaccinated with 2 Newcastle disease virus (NDV) groups, live and inactivated NDV vac-
cines. Hemagglutination inhibition (HI) titers (A) and enzyme-linked immunosorbent assay (ELISA) titers (B) were determined as the 
means antibody value and ± standard deviation (SD). Significant differences of antibody levels between live and inactivated vaccines are 
indicated by asterisk (p < 0.0001). Data represent the mean ± SD of 3 independent experiments.
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inactivated vaccine strains ranged from log2 8.7 ±  1.0 to log2 9.7 
±  0.8. For both live and inactivated vaccines, antibody titers 
were considered positive of log2 2 or more. ELISA revealed that 
the mean antibody titers against the live and inactivated vaccine 
strains ranged from 3,655 ±  3,741 to 6,601 ±  2,297 and from 
8,860 ±  3,101 to 12,338 ±  2,016, respectively. All values ex-
ceeded the manufacturer’s positive cutoff value of 200. Howev-
er, when the antibody levels of the live and inactivated vaccines 
induced using the Ulster 2C, KBNP-C4152R2L, and K148/08 
strains were compared, the antibody titers for inactivated vac-
cines were significantly higher than those for live vaccines in 
both the HI assay and ELISA (p <  0.0001). 

Correlation between HI and ELISA titers 
The correlation between HI and ELISA antibody titers is pre-

sented in Fig. 2. A strong positive correlation was observed be-
tween HI and ELISA antibody titers (Pearson correlation coef-
ficient r, 0.7622; 95% confidence interval, 0.7290–0.7918; p <  
0.0001). 

Relationship between serological responses and protection 
levels 

The relationship between antibody titers and survival rates is 
presented in Fig. 3. According to Korean Standards of National 
Lot Release for Veterinary Biologics, a vaccine is considered ef-
fective when the survival rates after vaccination with live and 
inactivated vaccines are ≥  80 and ≥  90%, respectively [16]. The 
mean HI and ELISA titers for live vaccines ranged from log2 3.1 
to log2 9 and 2,316 to 11,965, respectively, corresponding to a 
survival rates of ≥  80%. Further, the mean HI and ELISA titers 
for inactivated vaccines ranged from log2 7 to log2 11.4 and 

6,808 to 16,838, respectively, both of which corresponding to 
100% survival rates. 

Discussion 

All NDVs are of the same serotype and therefore, have similar 
antigenic properties; this results in a uniform immune response 
regardless of the vaccine strain. Both live and inactivated NDV 
vaccines have been widely used globally to contain the econom-
ic threat posed by ND outbreaks [6,19]. In Korea, national effi-
cacy trials have been conducted to ensure that vaccines against 
ND are safe and effective in generating a protective immune re-
sponse in chickens [16]. To safely manage vvNDV as a chal-
lenge virus, biosafety level 3 facilities must be developed and 
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Fig. 2. Correlation between hemagglutination inhibition (HI) and 
enzyme-linked immunosorbent assay (ELISA) antibody titers. The 
line reflects the best linear fit relationship between these vari-
ables. Data represent the mean ± standard deviation of 3 inde-
pendent experiments.
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utilized by 2023; however, in reality, this is difficult because of 
problems of cost and lack of facilities in Korea [20]. Therefore, 
this study investigated whether the efficacy of the vaccines 
could be evaluated using a more convenient and safe serological 
test than the challenge test. 

In this study, all 11 vaccines, including 7 live vaccines and 4 
inactivated vaccines, achieved the positive criterion of values of 
log2 2 or higher in the HI assay and values exceeding the posi-
tive cutoff value of 200 in ELISA. Moreover, the HI and ELISA 
antibody titers generated by the inactivated vaccines were sig-
nificantly higher than those generated by the live vaccines. In-
activated vaccines are generally produced as oil adjuvants to en-
able stimulation for a relatively long time, and they tend to in-
crease the level of humoral antibodies in the blood after intra-
muscular administration [21]. Moreover, adjuvants can effec-
tively stimulate immunity by inducing antibody production, 
and high antibody titers can protect against morbidity or mor-
tality associated with NDV infection [21]. 

In contrast, lentogenic NDV strains are widely used as live 
vaccines in young birds aged 1–14 days; these vaccines block 
infection by inducing early immunity through cellular, local 
mucosal, and humoral immune responses [12]. The biggest ad-
vantage of live vaccines is that they can be administered through 
various routes, such as through drinking water, spray, or eye 
drops, and are suitable for mass distribution, resulting in ex-
tremely low costs from production to administration [6,12]. 
NDV comprises an envelope containing the hemaggluti-
nin-neuraminidase (HN) protein that allows the virus to bind 
to host cells and the F glycoprotein that promotes the fusion of 
the envelope to host cells [6]. Antibodies against HN play a role 
in blocking virus attachment, and antibodies against the F gly-
coprotein inhibit virus fusion with host cell membranes, mak-
ing them the primary targets for immune responses [22,23]. In 
this study, these antibody titers of the ND vaccine strains dis-
played different trends in the HI assay and ELISA, as previously 
described [24,25]. This is because the HI assay only detects an-
tibodies against the HN protein, whereas the ELISA uses the 
whole virus as antigen, thus potentially allowing the detection 
of antibodies against any protein on the NDV particle [26,27]. 
Moreover, Thayer et al. [28] reported that ELISA could detect 
antibodies that did not act as protective antibodies or less ana-
lyze the role of HN in antibody induction. 

However, it is impossible to unequivocally state whether this 
significant difference is attributable to strain characteristics. 
This is because although commercial vaccines contain verified 
vaccine strains, the composition differs. In addition, chickens 
vaccinated against ND produce IgM, IgY, and IgA antibodies as 

part of the immune response [29]. Antibodies are detected in 
blood 6 days after inoculation, reaching peak levels at 3 to 4 
weeks resulting in high titers [30,31]. 

In this study, the results of the HI assay and a ready-made 
ELISA displayed a strong positive correlation, as previously de-
scribed [32]. However, Marquardt et al. [33] reported no cor-
relation between HI assay and ELISA. The results in this study 
also found that the number of positive samples was higher in 
the HI assay than in ELISA. In total, 0.4% of HI-negative sera 
samples (HI titer <  log2 2) were positive on ELISA, whereas 
1.7% of HI-positive sera samples were negative on ELISA (ELI-
SA titer <  200). The results of HI assay differed from those of 
ELISA, and it is different from what is known that the specifici-
ty of ELISA is higher than the HI assay [32]. This discrepancy 
between the 2 assays may be related to the aforementioned sen-
sitivity characteristics. Moreover, because commercial ELISA 
kits have different antigens for each product, differences in sen-
sitivity and specificity between kits must also be considered. 
Chickens vaccinated using live and inactivated vaccines exhibit-
ed survival rates of >  80% and 100%, respectively. Thus, this 
study found a strong correlation between protection against 
challenge infection and serological titers, which is consistent 
with the results of previous studies [34–36]. This study con-
firmed that standard efficacy tests can serve as serological tests, 
and can replace the challenge test and that the vaccine approval 
process can be improved through shortening the trial periods, 
considering animal welfare concerns, and reducing costs. 
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