DOI QR코드

DOI QR Code

Spatial Assessment of Climate Suitability for Summer Cultivation of Potato in North Korea

기후적합도 모형을 활용한 북한지역 내 감자의 여름재배 적지 탐색

  • Kang, Minju (Department of Plant Science, Seoul National University) ;
  • Hyun, Shinwoo (Department of Agriculture, Forestry and Bioresources, Seoul National University) ;
  • Kim, Kwang Soo (Department of Plant Science, Seoul National University)
  • 강민주 (서울대학교 식물생산과학부) ;
  • 현신우 (서울대학교 농림생물자원학부) ;
  • 김광수 (서울대학교 식물생산과학부)
  • Received : 2022.03.07
  • Accepted : 2022.03.29
  • Published : 2022.03.30

Abstract

Expansion of potato production areas can improve the food security in North Korea because the given crop has less requirements for agricultural materials and facilities. The Global Agro-Ecological Zones (GAEZ) model, which was developed to evaluate climate suitability under different cultivation conditions, was used to identify potential areas for the potato production. The spatial estimates of crop suitability under low and high input management conditions were downloaded from the GAEZ data portal. The values of suitability were obtained at the potato occurrence sites retrieved from the Global Biodiversity Information Facility (GBIF) database. The suitable areas for the potato production were identified using a threshold value derived from the suitability estimates at the occurrence sites. It was found that 90% of the occurrence sites had the suitability index value >3,333, which was set to be the threshold value. The suitable areas in North Korea were summarized by province and county. Rice cultivation areas were excluded from the analysis. The reported relative acreage of potato production was better represented by the suitable areas under the low input management options than the high input conditions. The suitable areas also had a similar distribution to the reported acreage of potato production by county. These results indicated that the GAEZ model would be useful to identify the candidate production areas, which would facilitate the increases in potato production especially under future climate conditions. Furthermore, monthly maps of crop suitability can be used to design cropping systems that would improve crop production under the limited use of agricultural materials and facilities.

북한의 식량 안보 위기를 개선하기 위해 농자재와 관개시설의 요구도가 적은 감자 재배 면적을 확대하는 것이 유리하다. 특히, 저투입 조건에서 감자의 생산성을 높일 있는 적지를 공간적으로 파악하기 위해 재배 조건과 기후적합도를 동시에 평가할 수 있는 Global Agro-Ecological Zones (GAEZ) 모형을 사용하였다. 본 연구에서는 Global Biodiversity Information Facility (GBIF) 데이터베이스에 수록된 감자 위치 자료를 사용하여 10 km 공간해상도를 가진 GAEZ 모형의 적합도 추정값의 분포를 분석하였다. 그 결과 중간정도에 해당하는 적합도 값인 3,333 이상에서 적합도가 0인 지점을 제외한 감자 위치 지점의 90%가 포함되었다. MODIS-IGBP 토지이용자료와 GAEZ Data Portal에서 제공하는 벼 수량 자료를 사용하여 추정된 감자 재배 후보 지역 중에서 적합도가 임계값 이상을 가진 재배적지를 구분한 결과 저투입 조건에서 추정된 재배적지는 실제 북한의 감자 재배지 공간 분포와 유사한 경향이 있었다. 특히, 군 단위의 재배 면적과 재배적지 면적을 비교하여, 재배규모가 큰 지역에서 재배적지의 면적도 넓은 경향을 보임을 확인하였다. 본 연구에서 제시한 적합도의 임계값을 바탕으로 미래 기후조건에서 추정된 값에 적용하여, 기후변화에 따른 재배지 변동 연구에 기초 자료로 사용될 수 있을 것이다. 또한, 여러 작물의 기후적합도를 함께 고려하여 작부체계를 구성한다면 전반적인 작물 생산성을 높일 수 있을 것으로 사료되었다.

Keywords

Acknowledgement

본 연구는 농촌진흥청 공동연구사업(과제번호: PJ015045032022)의 지원에 의해 수행되었습니다. 또한, 자료 정리에 도움을 준 신다연 학사과정 학생에게 감사를 드립니다.

References

  1. Ban, H. Y., D. H. Choi, J. B. Ahn, and B. W. Lee, 2017: Predicting regional soybean yield using crop growth simulation model. Korean Journal of Remote Sensing 33(5_2), 699-708. https://doi.org/10.7780/KJRS.2017.33.5.2.9
  2. Chhogyel, N., L. Kumar, Y. Bajgai, and L. S. Jayasinghe, 2020: Prediction of Bhutan's ecological distribution of rice (Oryza sativa L.) under the impact of climate change through maximum entropy modelling. The Journal of Agricultural Science 158(1-2), 25-37. https://doi.org/10.1017/s0021859620000350
  3. Dang, A. T., L. Kumar, and M. Reid, 2020: Modelling the potential impacts of climate change on rice cultivation in Mekong Delta, Vietnam. Sustainability 12(22), 9608. https://doi.org/10.3390/su12229608
  4. Doane, D. P., and L. E. Seward, 2011: Measuring skewness: a forgotten statistic? Journal of statistics education 19(2).
  5. Estes, L., B. Bradley, H. Beukes, D. Hole, M. Lau, M. Oppenheimer, R. Schulze, M. Tadross, and W. Turner, 2013: Comparing mechanistic and empirical model projections of crop suitability and productivity: implications for ecological forecasting. Global Ecology and Biogeography 22(8), 1007-1018. https://doi.org/10.1111/geb.12034
  6. Evans, J. M., R. J. Fletcher Jr, and J. Alavalapati, 2010: Using species distribution models to identify suitable areas for biofuel feedstock production. Gcb Bioenergy 2(2), 63-78. https://doi.org/10.1111/j.1757-1707.2010.01040.x
  7. FAO and WFP, 2013: FAO/WFP Crop And Food Security Assessment Mission to the Democratic People's Republic of Korea. FAO/WFP Bangkok, Thailand.
  8. FAO and WFP, 2019: FAO/WFP Joint Rapid Food Security Assessment, Democratic People's Republic of Korea. FAO/WFP Bangkok, Thailand.
  9. Fick, S. E., and R. J. Hijmans, 2017: WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International journal of climatology 37(12), 4302-4315. https://doi.org/10.1002/joc.5086
  10. Fischer, G., F. Nachtergaele, H. Van Velthuizen, F. Chiozza, G. Franceschini, M. Henry, D. Muchoney, and S. Tramberend, 2021: Global Agro-Ecological Zones v4-Model documentation, Food & Agriculture Org.
  11. Gorokhovich, Y., and A. Voustianiouk, 2006: Accuracy assessment of the processed SRTM-based elevation data by CGIAR using field data from USA and Thailand and its relation to the terrain characteristics. Remote Sensing of Environment 104(4), 409-415. https://doi.org/10.1016/j.rse.2006.05.012
  12. Han, S. H., and K. H. Kim, 2017: A Study on Livestock and Fisheries Products of North Korea represented in New Year's Address: from 2013 through 2017. THE JOURNAL OF PEACE STUDIES 18(1), 109-130. https://doi.org/10.14363/kaps.2017.18.1.109
  13. Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations - the CRU TS3.10 Dataset. International Journal of Climatology 34(3), 623-642. https://doi.org/10.1002/joc.3711
  14. Hijmans, R. J., L. Guarino, M. Cruz and E. Rojas, 2001: Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS. Plant Genetic Resources Newsletter, 15-19.
  15. Hyun, S. and K. S. Kim, 2017: R Based Parallelization of a Climate Suitability Model to Predict Suitable Area of Maize in Korea. Korean Journal of Agricultural and Forest Meteorology 19(3), 164-173. https://doi.org/10.5532/KJAFM.2017.19.3.164
  16. Kang, W., J. Kim, C. R. Park and J. H. Sung, 2014: Comparing connectivity in forest networks of seven metropolitan cities of South Korea. Korean Journal of Agricultural and Forest Meteorology 16(2), 93-102. https://doi.org/10.5532/KJAFM.2014.16.2.93
  17. KBA Standards and Appeals Committee, 2019: Guidelines for using a Global Standard for the Identification of Key Biodiversity Areas. IUCN Gland, Switzerland.
  18. Khalil, T., S. A. Asad, N. Khubaib, A. Baig, S. Atif, M. Umar, J. P. Kropp, P. Pradhan and S. Baig, 2021: Climate change and potential distribution of potato (Solanum tuberosum) crop cultivation in Pakistan using Maxent. AIMS Agriculture and Food 6(2), 663-676. https://doi.org/10.3934/agrfood.2021039
  19. Kim, D. J., J. H. Park, S. O. Kim, J. H. Kim, Y. Kim, and K. M. Shim, 2020a: A system displaying real-time meteorological data obtained from the automated observation network for verifying the early warning system for agrometeorological hazard. Korean Journal of Agricultural and Forest Meteorology 22(3), 117-127. https://doi.org/10.5532/KJAFM.2020.22.3.117
  20. Kim, G., 2020: Cooperation plan between South-North Korea in the water environment sector. Journal of the Korean Society of Water and Wastewater 34(1), 23-33. https://doi.org/10.11001/jksww.2020.34.1.023
  21. Kim, H., S. W. Hyun, G. Hoogenboom, C. H. Porter, and K. S. Kim, 2018a: Fuzzy union to assess climate suitability of annual ryegrass (Lolium multiflorum), alfalfa (Medicago sativa) and sorghum (Sorghum bicolor). Scientific Reports 8(1), 10220. https://doi.org/10.1038/s41598-018-28291-3
  22. Kim, J., C. K. Lee, J. Shon, K. J. Choi, and Y. Yoon, 2012: Comparison of statistic methods for evaluating crop model performance. Korean Journal of Agricultural and Forest Meteorology 14(4), 269-276. https://doi.org/10.5532/KJAFM.2012.14.4.269
  23. Kim, K. S., S. O. Kim, J. H. Kim, K. H. Moon, J. H. Shin, and J. Cho, 2018b: Development and application of crop models in Korea. Korean Journal of Agricultural and Forest Meteorology 20(2), 145-148. https://doi.org/10.5532/KJAFM.2018.20.2.145
  24. Kim, S. Y., J. G. Kim, and D. C. Chang, 2019: Production techniques of seed potatoes by the hydroponics of Korea provided to North Korea. Journal of Northern Agriculture Research 42(1), 35-49.
  25. Kim, S. Y., J. K. Kim, and J. H. Cho, 2015: Potato industry status, problems and development plan in North Korea. Journal of Northern Agriculture Research 38(1), 72-84.
  26. Kim, Y., and C. Lim, 2019: The food supply and demand of North Korea and food assistance. KREI Quarterly Agricultural Trends in North Korea 21(1), 3-16.
  27. Kim, Y. U., B. W. Lee, S. Heu, K. B. Shim, and D. S. Kim, 2020b: Potato yield gaps in North Korea and strategies to close the gaps. Agronomy 10(10), 1605. https://doi.org/10.3390/agronomy10101605
  28. Kogo, B. K., L. Kumar, R. Koech, and C. S. Kariyawasam, 2019: Modelling climate suitability for rainfed Maize cultivation in Kenya using a Maximum Entropy (MaxENT) approach. Agronomy 9(11), 727. https://doi.org/10.3390/agronomy9110727
  29. Latham, J., R. Cumani, I. Rosati, and M. Bloise, 2014: Global land cover share (GLC-SHARE) database beta-release version 1.0-2014. FAO: Rome, Italy 29.
  30. Lehner, B., and P. Doll, 2004: Development and validation of a global database of lakes, reservoirs and wetlands. Journal of hydrology 296(1-4), 1-22. https://doi.org/10.1016/j.jhydrol.2004.03.028
  31. Loveland, T. R., and A. S. Belward, 1997: The IGBP-DIS global 1km land cover data set, DISCover: first results. International Journal of Remote Sensing 18(15), 3289-3295. https://doi.org/10.1080/014311697217099
  32. Nachtergaele, F. O., H. V. Velthuizen, D. Wiberg, N. H. Batjes, J. A. Dijkshoorn, V. W. P. v. Engelen, G. Fischer, A. Jones, L. Montanarela, M. Petri, S. Prieler, E. Teixeira, and X. Shi, 2014: Harmonized World Soil Database (HWSD). ISRIC - World Soil Information.
  33. Oh, S. H., and S. W. Nam, 2021: Improvement plan on North Korea's water management system and Inter-Korean water resource cooperation. Legislation and Policy Studies 13(2), 59-92. https://doi.org/10.22809/NARS.2021.13.2.003
  34. Ojeda, J. J., E. E. Rezaei, T. A. Remenyi, M. A. Webb, H. A. Webber, B. Kamali, R. M. Harris, J. N. Brown, D. B. Kidd, and C. L. Mohammed, 2020: Effects of soil-and climate data aggregation on simulated potato yield and irrigation water requirement. Science of the Total Environment 710, 135589. https://doi.org/10.1016/j.scitotenv.2019.135589
  35. Park, S. Y., B. J. Kim, and S. H. Ahn, 2010: Characteristics of natural disaster in North Korea. Journal of the Korean Society of Hazard Mitigation 10(3), 21-29.
  36. Park, Y. H., and S. Y. Cho, 2018: Importance of chemical fertilizer for food self-sufficiency in North Korea. Journal of Northern Agriculture Research 41(1), 107-132.
  37. Qin, Z., J. E. Zhang, A. DiTommaso, R. L. Wang, and R. S. Wu, 2015: Predicting invasions of Wedelia trilobata (L.) Hitchc. with Maxent and GARP models. Journal of Plant Research 128(5), 763-775. https://doi.org/10.1007/s10265-015-0738-3
  38. Ramirez-Villegas, J., A. Jarvis, and P. Laderach, 2013: Empirical approaches for assessing impacts of climate change on agriculture: The EcoCrop model and a case study with grain sorghum. Agricultural and Forest Meteorology 170, 67-78. https://doi.org/10.1016/j.agrformet.2011.09.005
  39. Ray, D., M. D. Behera, and J. Jacob, 2018: Evaluating ecological niche models: A comparison between Maxent and GARP for predicting distribution of Hevea brasiliensis in India. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences 88(4), 1337-1343. https://doi.org/10.1007/s40011-017-0869-5
  40. Rhie, J. H., K. S. Lee, I. H. Seo, S. W. Min, and D. Y. Chung, 2017: Assessing the Limits of Agricultural Situation for the Food Security in North Korea. Korean Journal of Soil Science and Fertilizer 50(4), 275-284. https://doi.org/10.7745/KJSSF.2017.50.4.275
  41. Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, B. Rudolf, and M. Ziese, 2011: GPCC full data reanalysis version 6.0 at 0.5: Monthly land-surface precipitation from rain-gauges built on GTS-based and historic data. GPCC Data Rep., doi 10.
  42. Shim, K. M., H. K. Jeong, Y. A. Lim, Y. S. Shin, Y. S. Kim, I. t. Choi, M. P. Jung, and H. Kim, 2017: Cost-benefit analysis of a farmstead-specific early warning service for agrometeorological disaster risk management. Korean Journal of Agricultural and Forest Meteorology 19(3), 195-202. https://doi.org/10.5532/KJAFM.2017.19.3.195
  43. Siebert, S., V. Henrich, K. Frenken, and J. Burke, 2013: Update of the digital global map of irrigation areas to version 5. Rheinische Friedrich-Wilhelms-Universitat, Bonn, Germany and Food and Agriculture Organization of the United Nations, Rome, Italy.
  44. Smith, H., 2020: The ethics of United Nations sanctions on North Korea: effectiveness, necessity and proportionality. Critical Asian Studies 52(2), 182-203. https://doi.org/10.1080/14672715.2020.1757479
  45. UNEP-WCMC, 2019: User Manual for the World Database on Protected Areas and world database on other effective area-based conservation measures: 1.6. UNEP-WCMC Cambridge, UK.
  46. USDA, 2020: DPRK Food Grains Situation Update in MY 2018-19. USDA.
  47. Yoo, B. H., K. S. Kim, and H. Y. Ban, 2018: Development of a gridded crop growth simulation system for the DSSAT model using script languages. Korean Journal of Agricultural and Forest Meteorology 20(3), 243-251. https://doi.org/10.5532/KJAFM.2018.20.3.243
  48. Yoon, M., 2020: A Study on the Development Process and Characteristics of North Korean Organic Agriculture. North Korean Studies Review 24(1), 207-238. https://doi.org/10.22872/KANKS.2020.24.1.008
  49. Zhang, J., Y. Su, J. Wu, and H. Liang, 2015: GIS based land suitability assessment for tobacco production using AHP and fuzzy set in Shandong province of China. Computers and Electronics in Agriculture 114, 202-211. https://doi.org/10.1016/j.compag.2015.04.004