Acknowledgement
This work was partly supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No.20200002280012003) and a grant from the National Research Foundation of Korea (No.2019M3C1B7025091).
References
- Murray, C. J., & Lopez, A. D. (1997). Alternative projections of mortality and disability by cause 1990-2020: Global Burden of Disease Study. The lancet, 349(9064), 1498-1504. https://doi.org/10.1016/S0140-6736(96)07492-2
- Ross, R. (1993). The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature, 362(6423), 801-809. https://doi.org/10.1038/362801a0
- Marshall, I., et al. (2004). MRI and CFD studies of pulsatile flow in healthy and stenosed carotid bifurcation models. Journal of biomechanics, 37(5), 679-687. https://doi.org/10.1016/j.jbiomech.2003.09.032
- Yim, P., et al. (2005). Characterization of shear stress on the wall of the carotid artery using magnetic resonance imaging and computational fluid dynamics. Studies in health technology and informatics, 113, 412-442.
- Fry, D. L. (1968). Acute vascular endothelial changes associated with increased blood velocity gradients. Circulation research, 22(2), 165-197. https://doi.org/10.1161/01.RES.22.2.165
- Groen, H. C., et al. (2007). Plaque rupture in the carotid artery is localized at the high shear stress region: a case report. Stroke, 38(8), 2379-2381. https://doi.org/10.1161/strokeaha.107.484766
- Qiu, Y., & Tarbell, J. M. (2000). Numerical simulation of pulsatile flow in a compliant curved tube model of a coronary artery. J. Biomech. Eng., 122(1), 77-85. https://doi.org/10.1115/1.429629
- Loree, H., et al. (1991). Turbulent pressure fluctuations on surface of model vascular stenoses. American Journal of Physiology-Heart and Circulatory Physiology, 261(3), H644-H650. https://doi.org/10.1152/ajpheart.1991.261.3.h644
- Paul, M. C., et al. (2009). Large-Eddy simulation of pulsatile blood flow. Medical engineering & physics, 31(1), 153-159. https://doi.org/10.1016/j.medengphy.2008.04.014
- Tarbell, J. M., et al. (2014). Fluid mechanics, arterial disease, and gene expression. Annual review of fluid mechanics, 46, 591-614. https://doi.org/10.1146/annurev-fluid-010313-141309
- Giddens, D., et al. (1993). The role of fluid mechanics in the localization and detection of atherosclerosis. Journal of biomechanical engineering, 115(4B), 588-594. https://doi.org/10.1115/1.2895545
- Caro, C., et al. (1969). Arterial wall shear and distribution of early atheroma in man. Nature, 223(5211), 1159-1161. https://doi.org/10.1038/2231159a0
- Ku, D. N., et al. (1985). Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis: An Official Journal of the American Heart Association, Inc., 5(3), 293-302. https://doi.org/10.1161/01.ATV.5.3.293
- Zarins, C. K., et al. (1983). Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circulation research, 53(4), 502-514. https://doi.org/10.1161/01.RES.53.4.502
- Khodarahmi, I. (2015). Comparing velocity and fluid shear stress in a stenotic phantom with steady flow: phase-contrast MRI, particle image velocimetry and computational fluid dynamics. Magnetic Resonance Materials in Physics, Biology and Medicine, 28(4), 385-393. https://doi.org/10.1007/s10334-014-0476-x
- Mittal, R., et al. (2003). Numerical study of pulsatile flow in a constricted channel. Journal of Fluid Mechanics, 485, 337-378. https://doi.org/10.1017/S002211200300449X
- Grinberg, L., et al. (2009). Analyzing transient turbulence in a stenosed carotid artery by proper orthogonal decomposition. Annals of biomedical engineering, 37(11), 2200-2217. https://doi.org/10.1007/s10439-009-9769-z
- Lui, M., et al. (2020). On the turbulence modeling of blood flow in a stenotic vessel. Journal of biomechanical engineering, 142(1).
- Johari, N., et al. (2019). Disturbed flow in a stenosed carotid artery bifurcation: Comparison of RANS-based transitional model and LES with experimental measurements. International Journal of Applied Mechanics, 11(04), 1950032. https://doi.org/10.1142/S1758825119500327
- Willert, C. E., et al. (2018). Experimental evidence of near-wall reverse flow events in a zero pressure gradient turbulent boundary layer. Experimental Thermal and Fluid Science, 91, 320-328. https://doi.org/10.1016/j.expthermflusci.2017.10.033
- Lenaers, P., et al. (2012). Rare backflow and extreme wall-normal velocity fluctuations in near-wall turbulence. Physics of fluids, 24(3), 035110. https://doi.org/10.1063/1.3696304
- Wu, X., et al. (2020). Negative skin friction during transition in a zero-pressure-gradient flat-plate boundary layer and in pipe flows with slip and no-slip boundary conditions. Journal of Fluid Mechanics, 887.
- Patankar, S. V. (2018). Numerical heat transfer and fluid flow. CRC press
- Kang, T., et al. (2021). Effects of progressive carotid stenosis on cerebral haemodynamics: aortic-cerebral 3D patient-specific simulation. Engineering Applications of Computational Fluid Mechanics, 15(1), 830-847. https://doi.org/10.1080/19942060.2021.1916601
- Updegrove, A., et al. (2017). SimVascular: an open source pipeline for cardiovascular simulation. Annals of biomedical engineering, 45(3), 525-541. https://doi.org/10.1007/s10439-016-1762-8
- Gharahi, H., et al. (2016). Computational fluid dynamic simulation of human carotid artery bifurcation based on anatomy and volumetric blood flow rate measured with magnetic resonance imaging. International journal of advances in engineering sciences and applied mathematics, 8(1), 46-60. https://doi.org/10.1007/s12572-016-0161-6
- P., I. N. S. M. A. H. (2000). Comparison of the ECST, CC, and NASCET grading methods and ultrasound for assessing carotid stenosis. Medicina 2018, 54(3), 42;.
- Chaturvedi, S., et al. (1997). Cerebral angiography practices at US teaching hospitals: implications for carotid endarterectomy. Stroke, 28(10), 1895-1897. https://doi.org/10.1161/01.str.28.10.1895
- Gagne, P. J., et al. (1996). Can the NASCET technique for measuring carotid stenosis be reliably applied outside the trial? Journal of vascular surgery, 24(3), 449-456. https://doi.org/10.1016/S0741-5214(96)70201-X
- Lee, S. E., et al. (2008). Direct numerical simulation of transitional flow in a stenosed carotid bifurcation. J Biomech, 41(11), 2551-2561. https://doi.org/10.1016/j.jbiomech.2008.03.038
- Likittanasombut, P., et al. (2006). Volume Flow Rate of Common Carotid Artery Measured by Doppler Method and Color Velocity Imaging Quantification (CVI-Q). Journal of Neuroimaging, 16(1), 34-38. https://doi.org/10.1177/1051228405001523
- Holdsworth, D., et al. (1999). Characterization of common carotid artery blood-flow waveforms in normal human subjects. Physiological measurement, 20(3), 219. https://doi.org/10.1088/0967-3334/20/3/301
- Eicke, B. M., & Tegeler, C. H. (1995). Ultrasonic quantitative flow volumetry of the carotid arteries: initial experience with a color flow M-mode system. Cerebrovascular Diseases, 5(2), 145-149. https://doi.org/10.1159/000107839
- Ackroyd, N., et al. (1986). Quantitative common carotid artery blood flow: prediction of internal carotid artery stenosis. Journal of vascular surgery, 3(6), 846-853. https://doi.org/10.1016/0741-5214(86)90148-5
- Buijs, P. C., et al. (1998). Effect of age on cerebral blood flow: measurement with ungated two-dimensional phase-contrast MR angiography in 250 adults. Radiology, 209(3), 667-674. https://doi.org/10.1148/radiology.209.3.9844657
- Bogren, H. G., et al. (1994). Carotid and vertebral artery blood flow in left-and right-handed healthy subjects measured with MR velocity mapping. Journal of Magnetic Resonance Imaging, 4(1), 37-42. https://doi.org/10.1002/jmri.1880040110
- Mittal, R., et al. (2003). Numerical study of pulsatile flow in a constricted channel. Journal of Fluid Mechanics, 485, 337-378. https://doi.org/10.1017/S002211200300449X
- Adrianzen Alvarez, D. R. (2016). Influence of Outlet Boundary Conditions on Cerebrovascular Aneurysm Hemodynamics.
- Alimohammadi, M., et al. (2014). Development of a patient-specific simulation tool to analyse aortic dissections: assessment of mixed patient-specific flow and pressure boundary conditions. Medical engineering & physics, 36(3), 275-284. https://doi.org/10.1016/j.medengphy.2013.11.003
- Kefayati, S., & Poepping, T. L. (2013). Transitional flow analysis in the carotid artery bifurcation by proper orthogonal decomposition and particle image velocimetry. Medical engineering & physics, 35(7), 898-909. https://doi.org/10.1016/j.medengphy.2012.08.020
- Poepping, T. L., et al. (2002). An in vitro system for Doppler ultrasound flow studies in the stenosed carotid artery bifurcation. Ultrasound in medicine & biology, 28(4), 495-506. https://doi.org/10.1016/S0301-5629(02)00479-9
- Oates, C., et al. (2009). Joint recommendations for reporting carotid ultrasound investigations in the United Kingdom. European Journal of Vascular and Endovascular Surgery, 37(3), 251-261. https://doi.org/10.1016/j.ejvs.2008.10.015
- Plesniak, M. W., & Bulusu, K. V. (2016). Morphology of Secondary Flows in a Curved Pipe With Pulsatile Inflow. Journal of Fluids Engineering, 138(10).
- Ford, M. D., et al. (2008). Is flow in the common carotid artery fully developed? Physiol Meas, 29(11), 1335-1349. https://doi.org/10.1088/0967-3334/29/11/008
- Jeong, J., & Hussain, F. (1995). On the identification of a vortex. Journal of Fluid Mechanics, 285, 69-94. https://doi.org/10.1017/S0022112095000462
- Basavaraja, P., et al. (2017). Wall shear stress and oscillatory shear index distribution in carotid artery with varying degree of stenosis: a hemodynamic study. journal of mechanics in medicine and biology, 17(02), 1750037. https://doi.org/10.1142/s0219519417500373
- Markl, M., et al. (2010). In vivo wall shear stress distribution in the carotid artery: effect of bifurcation geometry, internal carotid artery stenosis, and recanalization therapy. Circulation: Cardiovascular Imaging, 3(6), 647-655. https://doi.org/10.1161/CIRCIMAGING.110.958504
- Ethier, C. R., & Simmons, C. A. (2007). Introductory biomechanics: from cells to organisms. Cambridge University Press
- Lee, S.-W., & Steinman, D. A. (2007). On the relative importance of rheology for image-based CFD models of the carotid bifurcation. 273-278.