DOI QR코드

DOI QR Code

Study on the Modification Effect of Lightweight Aggregate using Blast Furnace Slag

고로슬래그 미분말을 이용한 경량골재의 표면개질 효과에 관한 연구

  • Kim, Ho-Jin (Department of Architectural Engineering, Mokwon University) ;
  • Park, Sun-Gyu (Department of Architectural Engineering, Mokwon University)
  • 김호진 (목원대학교 건축공학과) ;
  • 박선규 (목원대학교 건축공학과)
  • Received : 2022.03.03
  • Accepted : 2022.03.25
  • Published : 2022.03.30

Abstract

Recently, building structures tend to be super high-rise and large-scale with the development of concrete technology. When high-rise building is constructed of reinforced concrete structure, it has a disadvantage that its own weight increases. Light weight aggregate(LWA) was developed to compensate for these shortcomings. Manufacturing concrete using these light weight aggregates has the advantage of reducing the self weight of the reinforced concrete structure, but has a disadvantage in that the strength of the concrete is reduced. In this study, an experimental study was conducted to investigate the strength characteristics of hardened cement according to the presence or absence of surface coating of lightweight aggregates. As a result, in terms of compressive strength, the surface-coated lightweight aggregate exhibited higher strength than the uncoated lightweight aggregate. Also, it was considered that this is because the interfacial voids of the surface coated lightweight aggregate mixed cement hardened body were filled with blast furnace slag fine powder particles.

최근 들어 건축구조물은 초고층화 및 대규모화 하는 경향에 있으며, 콘크리트 기술의 발달로 인하여 철근콘크리트 구조로 초고층 건축물을 축조하는 것이 일반화 되어 가고 있는 실정이다. 초고층 건축물에 적용되는 철근콘크리트주조는 고유동·고강도 콘크리트가 적용되기 때문에 시공성이 향상되고 단면축소가 가능하게 되었다. 또한 철근콘크리트구조의 초고층 건축물에는 슬라이딩폼, ACS(Auto Climbing Form) 등 시스템 거푸집을 적용하기 때문에 시공의 신속성을 기할 수 있으며, 철골구조보다 저렴한 가격에 내화·내진 등 우수한 품질로 빠른 시일 내에 완성할 수 있게 되었다. 그러나 초고층 건축물을 철근콘크리트 구조로 시공할 경우는 자중이 커지게 된다는 단점을 가지게 된다. 이러한 단점을 보완하고자 개발된 것이 경량골재(LWA, Low Weight Aggregate)이며, 최근까지 다양한 종류의 경량골재가 개발되어지고 있다. 이러한 경량골재를 이용하여 콘크리트를 제조하면 철근콘크리트 구조물의 자중을 줄일 수 있다는 장점을 가지게 되지만, 콘크리트의 강도가 줄어든다는 단점을 가진다. 이는 경량골재가 일반적인 천연골재에 비하여 낮은 강도를 가지고 있기 때문으로 최근에는 이러한 경량골재의 취약점을 보완하기 위한 연구가 진행되고 있다. 본 연구에서는 경량골재 표면코팅 유무에 따른 시멘트 경화체의 강도특성을 알아보기 위한 실험적 연구를 진행하였다. 그 결과, 압축강도는 표면코팅 한 경량골재가 코팅하지 않은 경량골재보다 높은 강도발현을 나타냈으며, 물/시멘트 비 50 %에서 표면코팅 경량골재가 높은 압축강도를 발현하는 것을 알 수 있었다. 이는 표면코팅 경량골재 혼입 시멘트 경화체의 계면 공극이 고로슬래그 미분말 입자로 메워졌기 때문인 것으로 확인되었다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음(과제번호 20NANO-B156177-01)을 밝히고 이에 감사드립니다.

References

  1. Barnat-Hunek, D., Gora, J., Andrzejuk, W., Lagod, G. (2018). The microstructure-mechanical properties of hybrid fibres-reinforced self-compacting lightweight concrete with perlite aggregate, Materials, 11(7), 1093. https://doi.org/10.3390/ma11071093
  2. Elsharief, A., Cohen, M.D., Olek, J. (2005). Influence of lightweight aggregate on the microstructure and durability of mortar, Cement and Concrete Research, 35(7), 1368-1376. https://doi.org/10.1016/j.cemconres.2004.07.011
  3. Han, C.G. (2001). Concrete in High Rise Housing Buildings, Architecture, Review of Architecture and Building Science, 45(10), 26-34 [in Korean].
  4. Khazma, M., Goullieux, A., Dheilly, R. M., Laidoudi, B., Queneudec, M. (2011). Impact of aggregate coating with a PEC elastomer on properties of lightweight flax shive concrete, Industrial crops and Products, 33(1), 49-56. https://doi.org/10.1016/j.indcrop.2010.08.005
  5. Kim, J.H., Kim, S.H., Sa, S.H., Ji, S.W., Choi, S.K., Seo, C.H. (2010). An experimental study on the physical properties of lightweight concrete according to aggregate union, Proceedings of the Korea Concrete Institute Conference, 22(1), 225-226 [in Korean].
  6. Kim, S.S., Jeong, S.H. (2009). Reinforced concrete technology and the modernization of korean buildings, Magazine of the Korea Concrete Institute, 21(3), 54-60 [in Korean]. https://doi.org/10.22636/MKCI.2009.21.3.54
  7. Park, C.H., Kim, Y.H., Jun, Y.B., Kim, J.H., Ryu, D.H. (2019). Properties comparison of concrete using lightweight aggregate with different water condition and natural aggregate, Journal of the Korea Concrete Institute, 31(5), 459-466 [in Korean]. https://doi.org/10.4334/jkci.2019.31.5.459
  8. Park, D.O., Sa, S.H., Ji, S.W., Choi, S.K., Yoo, T.D., Seo, C.H. (2007). Study on characteristics of Lightweight Aggregate Concrete as Types of Lightweight Aggregate, In Proceedings of the Korean Institute of Building Construction Conference, 7(1) 67-70.
  9. Poon, C.S., Shui, Z.H., Lam, L. (2004). Effect of microstructure of ITZ on compressive strength of concrete prepared with recycled aggregates, Construction and Building Materials, 18(6), 461-468. https://doi.org/10.1016/j.conbuildmat.2004.03.005
  10. Vahabi, M.Y., Tahmouresi, B., Mosavi, H., Aval, S.F. (2021). Effect of pre-coating lightweight aggregates on the self-compacting concrete, Structural Concrete.
  11. Vargas, P., Restrepo-Baena, O., Tobon, J.I. (2017). Microstructural analysis of interfacial transition zone(ITZ) and its impact on the compressive strength of lightweight concretes, Construction and Building Materials, 137, 381-389. https://doi.org/10.1016/j.conbuildmat.2017.01.101
  12. Wang, J., Li, Y., Zhang, M.Z. (2008). Shrinkage performance and cracking resistance mechanism of rubberized lightweight aggregate concrete with polymer, In Key Engineering Materials, Trans Tech Publications Ltd., 385, 817-820. https://doi.org/10.4028/www.scientific.net/kem.385-387.817
  13. Kim, Y.T., Jang, C.S., Ryu, Y.W. (2011). Water absorption characteristics of artificial lightweight aggregate pre-pared by pre-wetting, Journal of the Korean Crystal Growth and Crystal Technology, 21(2), 82-86. https://doi.org/10.6111/JKCGCT.2011.21.2.082
  14. Yang, K.H. (2019). Evaluation of mechanical properties of lightweight concrete using bottom ash aggregates, Journal of the Korea Concrete Institute, 31(4), 331-337. https://doi.org/10.4334/jkci.2019.31.4.331