DOI QR코드

DOI QR Code

Evaluation of Self-Cleaning Performance of Mortar Using Nano-Titanium Dioxide Photocatalytic Coating

나노 이산화티탄 광촉매 코팅을 적용한 모르타르의 자기정화성능 평가

  • Yang, In-Hwan (Department of Civil Engineering, Kunsan National University) ;
  • Jeon, Hyo-Jin (Department of Civil Engineering, Kunsan National University) ;
  • Lee, Seung-Jin (Department of Civil Engineering, Kunsan National University)
  • 양인환 (군산대학교 토목공학과) ;
  • 전효진 (군산대학교 토목공학과) ;
  • 이승진 (군산대학교 토목공학과)
  • Received : 2022.02.17
  • Accepted : 2022.03.15
  • Published : 2022.03.30

Abstract

This paper aims at estimating self-cleaning performance of mortar coated with photocatalytic suspension under various conditions. Experimental variables included the concentration (1.5 % and 3.0 %) of photocatalytic suspension for coating mortar specimen, the presence of hydrophilic agent in photocatalytic suspension, and applying the primer on the surface of mortar. The color change of methylene blue solution increased and accordingly self-cleaning performance increased as photocatalytic concentration increased. The presence of hydrophilic agent in photocatalytic suspension slightly decreased the self-cleaning performance compared to the conventional photocatalytic suspension. Test results also showed that mortar specimen including primer and specimen not including primer did not show significantly different self-cleaning performance. In addition, cracks on the surface of mortar specimens decreased as the photocatalytic concentration increased. Therefore, increase in cracks on the surface of mortar at different photocatalytic concentration might adversely affect the self-cleaning performance of mortar specimens.

본 연구에서는 시설물의 자기정화성능을 확보하기 위하여 이산화티탄 광촉매 용액을 코팅한 모르타르의 자기정화성능을 분석하였다. 광촉매 코팅 용액의 농도(1.5 %와 3.0 %), 초친수강화 용액 적용 유무 및 프라이머 용액의 사용 유무를 실험변수로 고려하였다. 광촉매 농도가 증가할수록 메틸렌블루 수용액의 색상 변화율이 증가하였으며, 이는 광촉매 농도가 증가할수록 자기정화성능이 증가하는 것을 나타낸다. 초친수성 광촉매 용액의 적용은 일반 광촉매 용액에 비해 자기정화성능을 다소 감소시킬 가능성이 있음을 나타낸다. 또한, 프라이머를 사용한 모르타르의 자기정화성능은 프라이머를 사용하지 않은 모르타르의 자기정화성능과 뚜렷한 차이를 나타내지 않는다. 한편, 낮은 농도(1.5 %)로 코팅된 모르타르에 비해 높은 농도(3.0 %)로 코팅된 모르타르 시편 표면의 코팅 균열이 미세하여 상대적으로 큰 광촉매 반응면적을 확보하고 자기정화성능 증가에 유리한 영향을 미친 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 한국연구재단의 지원을 받아 연구되었습니다(No. 2021R1I1A3059986).

References

  1. Cedillo-Gonzalez, E.I., Hernandez-Lopez, J.M., Ruiz-Valdes, J.J., Barbieri, V., Siligardi, C. (2020). Self-cleaning TiO2 coatings for building materials: the influence of morphology and humidity in the stain removal performance, Construction and Building Materials, 237, 117692. https://doi.org/10.1016/j.conbuildmat.2019.117692
  2. Chindaprasirt, P., & Rattanasak, U. (2020). Fabrication of self-cleaning fly ash/polytetrafluoroethylene material for cement mortar spray-coating, Journal of Cleaner Production, 264, 121748. https://doi.org/10.1016/j.jclepro.2020.121748
  3. Choi, H.J., Park, J.J., Yoo, D,Y. (2021). Benefits od TiO2 photocatalyst on mechanical properties and nitrogen oxide removal of ultra-high-performance concrete, Construction and Building Materials, 285, 122921. https://doi.org/10.1016/j.conbuildmat.2021.122921
  4. Faraldos, M., Korpp, R., Anderson, M.A., Sobolev, K. (2016). Photocatalytic hydrophobic concrete coatings to combat air pollution, Caralysis Today, 259, 228-236. https://doi.org/10.1016/j.cattod.2015.07.025
  5. Fiore, A., Marano, G.C., Monaco, P., Morbi, A. (2013). Preliminary experimental study on the effects of surface-applied photocatalytic products on the durability of reinforced concrete, Construction and Building Materials, 48, 137-143. https://doi.org/10.1016/j.conbuildmat.2013.06.058
  6. Jimenez-Relinque, E., Rodriguez-Garcia J.R., Castillo, A., Castellote, M. (2015). Characteristics and efficiency of photocatalytic cementitious materials: type of binder, roughness and microstructure, Cement and Concrete Research, 71, 124-131. https://doi.org/10.1016/j.cemconres.2015.02.003
  7. KS L ISO 679. (2006). Methods of Testing Cements - Determination of Strength.
  8. KS L ISO 10678 (2012). Fine Ceramics(Advanced Ceramics, Advanced Technical Ceramics) - Determination of Photocatalytic Activity of Surface in an Aqueous Medium by Degradation of Methylene blue.
  9. Luevano-Hipolito, E.,Torres-Martinez, L.M., Cantu-Castro, L.V.F. (2019). Self-cleaning coatings based on fly ash and bismuth-photocatalysts: Bi2O3, Bi2O2CO3, BiOI, BiVO4, BiPO4, Construction and Building Materials, 220, 206-213. https://doi.org/10.1016/j.conbuildmat.2019.06.030
  10. Maury-Ramirez, A., Nikkanen, J. P., Honkanen, M., Demeestere, K., Levanen, E., & De Belie, N. (2014). TiO2 coatings synthesized by liquid flame spray and low temperature sol-gel technologies on autoclaved aerated concrete for air-purifying purposes. Materials characterization, 87, 74-85. https://doi.org/10.1016/j.matchar.2013.10.025
  11. Park, G.J., Park, J.J., Kwak, J.W., Kim, S.W. (2019). Research on the efficient manufacturing method of photocatalyst concrete according to the type and mixing ratio of photocatalyst, Journal of the Korea Institute for Structural Maintenance and Inspection, 23(4), 69-77. https://doi.org/10.11112/JKSMI.2019.23.4.69
  12. Park, H.W., Park, J.H., Yang, I.H. (2020). Estimation of the pollution removal performance of concrete containing photocatalyst, International Journal of Concrete Structures and Materials, 32(1), 331-333.
  13. Perez-Nicolas, M., Plank, J., Ruiz-Izuriaga, D., Navarro-Blasco, I., Fernandez, J.M., Alvarez, J.I. (2018). Photocataiytically active coatings for cement and air lime mortars: enhancement of the activity by incorporation of superplasticizers, Construction and Building Materials, 162, 628-648. https://doi.org/10.1016/j.conbuildmat.2017.12.087
  14. Quagliarini, E., Bondioli, F., Goffredo, G.B., Cordoni, C., Munafo, P. (2012). Self-cleaning and de-polluting stone surfaces: TiO2 nanoparticles for limestone, Construction and Building Materials, 37, 51-57. https://doi.org/10.1016/j.conbuildmat.2012.07.006
  15. Shen, W., Zhang, C., Li, Q., Zhang, W., Cao, L., Ye, J. (2015). Preparation of titanium dioxide nano particle modified photocatalytic self-cleaning concrete, Journal of cleaner production, 87, 762-765. https://doi.org/10.1016/j.jclepro.2014.10.014
  16. Vulic, T., Hadnadjev-Kostic, M., Rudic, O., Radeka, M., Marinkovic-Neducin, R., Ranogajec, J. (2013). Improvement of cement-based mortars by application of photocatalytic active Ti-Zn-Al nanocomposites, Cement and Concrete Composites, 36, 121-127. https://doi.org/10.1016/j.cemconcomp.2012.07.005
  17. Wang, Z., Gauvin, F., Feng, P., Brouwers, H. J. H., & Yu, Q. (2020). Self-cleaning and air purification performance of Portland cement paste with low dosages of nanodispersed TiO2 coatings. Construction and Building Materials, 263, 120558. https://doi.org/10.1016/j.conbuildmat.2020.120558
  18. Xu, Y., Jin, R., Hu, L., Li, B., Chen, W., Shen, J., Wu, P., Fang, J. (2020). Studying the mix design and investigating the photocatalytic performance of pervious concrete containing TiO2-Soaked recycled aggregates, Journal of Cleaner Production, 248, 119281. https://doi.org/10.1016/j.jclepro.2019.119281
  19. Zhang, R., Cheng, X., Hou, P., Ye, Z. (2015). Influences of nano-TiO2 on the properties of cement-based materials: Hydration and drying shrinkage, Construction and Building Materials, 81, 35-41. https://doi.org/10.1016/j.conbuildmat.2015.02.003