DOI QR코드

DOI QR Code

Development on Metallic Nanoparticles-enhanced Ultrasensitive Sensors for Alkaline Fuel Concentrations

금속 나노입자 도입형의 초고감도 센서 개발 및 알칼라인 연료 측정에 적용 연구

  • Nde, Dieudonne Tanue (Department of Chemistry, Kyungpook National University) ;
  • Lee, Ji Won (Department of Chemistry, Kyungpook National University) ;
  • Lee, Hye Jin (Department of Chemistry, Kyungpook National University)
  • 누드듀돈타뉴 (경북대학교 자연과학대학 화학과) ;
  • 이지원 (경북대학교 자연과학대학 화학과) ;
  • 이혜진 (경북대학교 자연과학대학 화학과)
  • Received : 2022.03.14
  • Accepted : 2022.03.25
  • Published : 2022.04.10

Abstract

Alkaline fuel cells using liquid fuels such as hydrazine and ammonia are gaining great attention as a clean and renewable energy solution possibly owing to advantages such as excellent energy density, simple structure, compact size in fuel container, and ease of storage and transportation. However, common shortcomings including cathode flooding, fuel crossover, side yield reactions, and fuel security and toxicity are still challenging issues. Real time monitoring of fuel concentrations integrated into a fuel cell device can help improving fuel cell performance via predicting any loss of fuels used at a cathode for efficient energy production. There have been extensive research efforts made on developing real-time sensing platforms for hydrazine and ammonia. Among these, recent advancements in electrochemical sensors offering high sensitivity and selectivity, easy fabrication, and fast monitoring capability for analysis of hydrazine and ammonia concentrations will be introduced. In particular, research trend on the integration of metallic and metal oxide nanoparticles and also their hybrids with carbon-based nanomaterials into electrochemical sensing platforms for improvement in sensitivity and selectivity will be highlighted.

암모니아 및 하이드라진 등의 액체연료를 사용하는 알칼라인 연료전지는 높은 에너지 밀도, 저장 및 운송의 용이성, 경제성 등의 장점으로 청정 및 재생 에너지 솔루션으로 각광받고 있다. 하지만 환원극에서 플러딩, 연료 크로스오버 현상, 부반응생성물, 연료 안정성 및 독성 등의 문제들이 여전히 이슈가 되고 있다. 이 중 효율적인 에너지 생산을 위해 산화극에서 산화되어야 하는 연료의 손실을 사전에 감지할 수 있는 연료 모니터링 시스템의 개발은 알칼라인 연료를 사용하는 연료 전지의 성능 향상에 큰 도움을 줄 것으로 사료된다. 하이드라진 및 암모니아의 농도를 실시간으로 측정 가능한 센싱 플랫폼이 다수 개발되어왔으며, 이 중 높은 선택성 및 민감도, 신속한 실시간 모니터링, 플랫폼의 휴대화 등의 장점을 갖는 전기화학적 센서 개발 연구 분야의 최신 동향에 대해 소개하고자 한다. 특히 센서의 감도 및 선택성 증대를 위해 다양한 금속성, 금속산화물 나노소재 및 하이브리드 나노소재를 접목하는 연구 방향에 대해 중점적으로 소개하고자 한다.

Keywords

Acknowledgement

This research was supported by Kyungpook National University Development Project Research Fund, 2019.

References

  1. W. Dai, H. Wen, Z. Zhang, and P. Wang, Metal-organic frameworks-derived Ni2P@C nanocomposite as a high-performance catalyst for hydrazine electrooxidation, J. Alloys Compd., 902, 163746 (2022). https://doi.org/10.1016/j.jallcom.2022.163746
  2. M. B. Askari, P. Salarizadeh, H. Beitollahi, S. Tajik, A. Eshghi, and S. Azizi, Electro-oxidation of hydrazine on NiFe2O4-rGO as a high-performance nano-electrocatalyst in alkaline media, Mater. Chem. Phys., 275, 125313 (2022). https://doi.org/10.1016/j.matchemphys.2021.125313
  3. G. Jeerh, M. Zhang, and S. Tao, Recent progress in ammonia fuel cells and their potential applications, J. Mater. Chem. A, 9, 727-752 (2021). https://doi.org/10.1039/D0TA08810B
  4. S. Uhm, S. Hong, and J. Lee, Effective electrode structure for the stability of alkaline hydrazine fuel cells, Appl. Chem. Eng., 30, 652-658 (2019). https://doi.org/10.14478/ace.2019.1091
  5. C. Chen, H. Wen, P.-P. Tang, and P. Wang, Supported Ni@Ni2P core-shell nanotube arrays on Ni Foam for hydrazine electrooxidation, ACS Sustain. Chem. Eng., 9, 4564-4570 (2021). https://doi.org/10.1021/acssuschemeng.0c09154
  6. M. Hren, M. Bozic, D. Fakin, K. S. Kleinschek, and S. Gorgieva, Alkaline membrane fuel cells: anion exchange membranes and fuels, Sustain. Energy Fuels, 5, 604-637 (2021). https://doi.org/10.1039/D0SE01373K
  7. D. Akinyele, E. Olabode, and A. Amole, Review of fuel cell technologies and applications for sustainable microgrid systems, Inventions, 5, 42 (2020). https://doi.org/10.3390/inventions5030042
  8. N. Shaari, S. K. Kamarudin, R. Bahru, S. H. Osman, and N. A. I. M. Ishak, Progress and challenges: review for direct liquid fuel cell, Int. J. Energy Res., 45, 6644-6688 (2021). https://doi.org/10.1002/er.6353
  9. I. Banga, A. Paul, S. Muthukumar, and S. Prasad, ZENose (ZIF-based electrochemical nose) platform for noninvasive ammonia detection, ACS Appl. Mater. Interfaces, 13, 16155-16165 (2021). https://doi.org/10.1021/acsami.1c02283
  10. R. Ahmad, T. Beduk, S. M. Majhi, and K. N. Salama, One-step synthesis and decoration of nickel oxide nanosheets with gold nanoparticles by reduction method for hydrazine sensing application, Sens. Actuators B: Chem., 286, 139-147 (2019). https://doi.org/10.1016/j.snb.2019.01.132
  11. F. F. Franco, L. Manjakkal, D. Shakthivel, and R. Dahiya, ZnO based screen printed aqueous ammonia sensor for water quality monitoring, IEEE Sens. J., 1-4 (2019). https://doi.org/10.1109/jsen.2004.823360
  12. C. Wang, B. Yang, H. Liu, F. Xia, and J. Xiao, Potentiometric ammonia sensor with InVO4 sensing electrode, Sens. Actuators B: Chem., 316, 128140 (2020). https://doi.org/10.1016/j.snb.2020.128140
  13. X. Liu, Z. Yang, Q. Sheng, and J. Zheng, One-Pot Synthesis of Au-Fe3O4-GO nanocomposites for enhanced electrochemical sensing of hydrazine, J. Electrochem. Soc., 165, B596-B602 (2018).
  14. N. S. K. Gowthaman, S. Shankar, and S. A. John, Ultrasensitive and selective hydrazine determination in water samples using Ag-Cu heterostructures-grown indium tin oxide electrode via environmentally benign methods, ACS Sustain. Chem. Eng., 6, 17302-17313 (2018). https://doi.org/10.1021/acssuschemeng.8b04777
  15. S. W. Wallace, I. T. McCrum, and M. J. Janik, Ammonia electrooxidation mechanism on the platinum (100) surface, Catal. Today., 371, 50-57 (2021). https://doi.org/10.1016/j.cattod.2020.09.024
  16. H. Liu, Y. Liu, M. Li, X. Liu, and J. Luo, Transition-metal-based electrocatalysts for hydrazine-assisted hydrogen production, Mater. Today Adv., 7, 100083 (2020). https://doi.org/10.1016/j.mtadv.2020.100083
  17. Z. Feng, H. Zhang, B. Gao, P. Lu, D. Li, and P. Xing, Ni-Zn nanosheet anchored on rGO as bifunctional electrocatalyst for efficient alkaline water-to-hydrogen conversion via hydrazine electrolysis, Int. J. Hydrog. Energy., 45, 19335-19343 (2020). https://doi.org/10.1016/j.ijhydene.2020.05.120
  18. Y. Yin, H. Zhang, P. Huang, C. Xiang, Y. Zou, F. Xu, and L. Sun, Inducement of nanoscale Cu-BTC on nanocomposite of PPy-rGO and its performance in ammonia sensing, Mater. Res. Bull., 99, 152-160 (2018). https://doi.org/10.1016/j.materresbull.2017.11.012
  19. M. Annalakshmi, P. Balasubramanian, S.-M. Chen, and T.-W. Chen, One pot synthesis of nanospheres-like trimetallic NiFeCo nanoalloy: A superior electrocatalyst for electrochemical sensing of hydrazine in water bodies, Sens. Actuators B: Chem., 296, 126620 (2019). https://doi.org/10.1016/j.snb.2019.05.097
  20. I. V. Bagal, A. Ejaz, A. Waseem, M. A. Johar, M. A. Hassan, J. H. Han, and S.-W. Ryu, Three-Dimensional integration of CuO-Si hierarchical nanowires for electrochemical detection of N2H4, ACS Appl. Nano Mater., 3, 4394-4406 (2020). https://doi.org/10.1021/acsanm.0c00501
  21. Y. Zhang, Y. Zhang, D. Zhang, S. Li, C. Jiang, and Y. Su, Confinement preparation of Au nanoparticles embedded in ZIF-67-derived N-doped porous carbon for high-performance detection of hydrazine in liquid/gas phase, Sens. Actuators B: Chem., 285, 607-616 (2019). https://doi.org/10.1016/j.snb.2019.01.105
  22. M. M. Rahman, M. M. Alam, and K. A. Alamry, Sensitive and selective m-tolyl hydrazine chemical sensor development based on CdO nanomaterial decorated multi-walled carbon nanotubes, Ind. Eng. Chem., 77, 309-316 (2019). https://doi.org/10.1016/j.jiec.2019.04.053
  23. C. Duan, Y. Dong, Q. Sheng, and J. Zheng, A high-performance non-enzymatic electrochemical hydrazine sensor based on NiCo 2S4 porous sphere, Talanta, 198, 23-29 (2019). https://doi.org/10.1016/j.talanta.2019.01.081
  24. F. Asadi, S. N. Azizi, and S. Ghasemi, Preparation of Ag nanoparticles on nano cobalt-based metal organic framework (ZIF-67) as catalyst support for electrochemical determination of hydrazine, J. Mater. Sci. Mater., 30, 5410-5420 (2019). https://doi.org/10.1007/s10854-019-00834-y
  25. F. Giroud, A. J. Gross, D. F. Junior, M. Holzinger, C. E. M. de Campos, J. J. S. Acuna, J. B. Domingos, and S. Cosnier, Hydrazine electrooxidation with PdNPs and its application for a hybrid self-powered sensor and N2H4 decontamination, J. Electrochem. Soc., 164, H3052-H3057 (2016).
  26. K. K. Lee, P. Y. Loh, C. H. Sow, and W. S. Chin, CoOOH nanosheet electrodes: simple fabrication for sensitive electrochemical sensing of hydrogen peroxide and hydrazine, Biosens. Bioelectron., 39, 255-260 (2013). https://doi.org/10.1016/j.bios.2012.07.061
  27. S. Babanova, U. Martinez, K. Artyushkova, K. Asazawa, H. Tanaka, and P. Atanassov, Hydrazine sensor for quantitative determination of high hydrazine concentrations for direct hydrazine fuel cell vehicle applications, J. Electrochem. Soc., 161, H79-H85 (2013).
  28. P. B. Deroco, I. G. Melo, L. S. R. Silva, K. I. B. Eguiluz, G. R. Salazar-Banda, and O. Fatibello-Filho, Carbon black supported Au-Pd core-shell nanoparticles within a dihexadecylphosphate film for the development of hydrazine electrochemical sensor, Sens. Actuators B: Chem., 256, 535-542 (2018). https://doi.org/10.1016/j.snb.2017.10.107
  29. L. Zhang, J. Liu, X. Peng, Q. Cui, D. He, C. Zhao, and H. Suo, Fabrication of a Ni foam-supported platinum nanoparticles-silver/polypyrrole electrode for aqueous ammonia sensing, Synth. Met., 259, (2020).
  30. H. Zhang, Y. Wang, B. Zhang, Y. Yan, J. Xia, X. Liu, X. Qiu, and Y. Tang, Construction of ultrasensitive ammonia sensor using ultrafine Ir decorated hollow graphene nanospheres, Electrochim. Acta., 304, 109-117 (2019). https://doi.org/10.1016/j.electacta.2018.11.215
  31. T. Sato, H. Ikeda, and N. Miura, Mixed-potential type zirconia-based NH3 sensor using SnO2-disk sensing-electrode attached with sputtered Au, ECS Electrochem. Lett., 3, B13-B15 (2014).
  32. L. Zhang, J. Wan, J. Li, Q. Cui, D. He, C. Zhao, and H. Suo, Fabricating a self-supported electrode for detecting ammonia in water based on electrodepositing platinum-polypyrrole on Ni foam, J. Electrochem. Soc., 167, 027537 (2020). https://doi.org/10.1149/1945-7111/ab6c55
  33. A. Baciu, F. Manea, A. Pop, R. Pode, and J. Schoonman, Simultaneous voltammetric detection of ammonium and nitrite from groundwater at silver-electrodecorated carbon nanotube electrode, Process Saf. Environ. Prot., 108, 18-25 (2017). https://doi.org/10.1016/j.psep.2016.05.006
  34. M. T. Zhybak, M. Y. Vagin, V. Beni, X. Liu, E. Dempsey, A. P. F. Turner, and Y. I. Korpan, Direct detection of ammonium ion by means of oxygen electrocatalysis at a copper-polyaniline composite on a screen-printed electrode, Microchim. Acta, 183, 1981-1987 (2016). https://doi.org/10.1007/s00604-016-1834-3
  35. P. K. Sekhar, D. Graf, O. Ojelere, T. K. Saha, M. A. Riheen, and S. Mathur, Electrochemical gas sensor integrated with vanadium monoxide nanowires for monitoring low concentrations of ammonia emission, J. Electrochem. Soc., 167, 027548 (2020). https://doi.org/10.1149/1945-7111/ab7114
  36. P. Elumalai, V. V. Plashnitsa, Y. Fujio, and N. Miura, Stabilized zirconia-based sensor attached with NiO/Au sensing electrode aiming for highly selective detection of ammonia in automobile exhausts, Electrochem. Solid-State Lett., 11, J79-J81 (2008).
  37. F. Ahmadi Tabr, F. Salehiravesh, H. Adelnia, J. N. Gavgani, and M. Mahyari, High sensitivity ammonia detection using metal nanoparticles decorated on graphene macroporous frameworks/polyaniline hybrid, Talanta, 197, 457-464 (2019). https://doi.org/10.1016/j.talanta.2019.01.060
  38. Z. Feng, D. Li, L. Wang, Q. Sun, P. Lu, P. Xing, and M. An, A 3D porous Ni-Zn/RGO catalyst with superaerophobic surface for high-performance hydrazine electrooxidation, J. Alloys Compd., 788, 1240-1245 (2019). https://doi.org/10.1016/j.jallcom.2019.03.007
  39. M. Sarno, and E. Ponticorvo, Metal-metal oxide nanostructure supported on graphene oxide as a multifunctional electro-catalyst for simultaneous detection of hydrazine and hydroxylamine, Electrochem. Commun., 107, 106510 (2019). https://doi.org/10.1016/j.elecom.2019.106510
  40. N. Teymoori, J. B. Raoof, M. A. Khalilzadeh, and R. Ojani, An electrochemical sensor based on CuO nanoparticle for simultaneous determination of hydrazine and bisphenol A, J. Iran. Chem. Soc., 15, 2271-2279 (2018). https://doi.org/10.1007/s13738-018-1416-x
  41. S. Lee, and H. J. Lee, Potential applicabilities of ammonia in future hydrogen energy supply industries, Appl. Chem. Eng., 30, 667-672 (2019).
  42. H. Yang, I. Kim, Y. Ko, S. Kim, and W. Kim, Studies on Adsorption and Desorption of Ammonia Using Covalent Organic Framework COF-10, Appl. Chem. Eng., 27, 265-269 (2016). https://doi.org/10.14478/ACE.2016.1025
  43. K. Nagita, Y. Yuhara, K. Fujii, Y. Katayama, and M. Nakayama, Ni- and Cu-co-intercalated layered manganese oxide for highly efficient electro-oxidation of ammonia selective to nitrogen, ACS Appl. Mater. Interfaces., 13, 28098-28107 (2021). https://doi.org/10.1021/acsami.1c04422
  44. Min Seob Park, and K.-Y. Choi, Investigation of Liquid Phase Ammonia Removal Efficiency by Chemo-biological Process of Zeolites and Klebsiella pneumonia sp., Appl. Chem. Eng., 28, 685-690 (2017). https://doi.org/10.14478/ACE.2017.1098
  45. Hyun Hee Lee, Ki Wang Kim, and S. C. Hong, Characterization studies for the selective catalytic oxidation of ammonia utilizing Ce/TiO2 catalyst, Appl. Chem. Eng., 24, 494-498 (2013). https://doi.org/10.14478/ace.2013.24.5.494
  46. S. Singh, J. Deb, U. Sarkar, and S. Sharma, MoS2/MoO3 nanocomposite for selective NH3 detection in a humid environment, ACS Sustain. Chem. Eng., 9, 7328-7340 (2021). https://doi.org/10.1021/acssuschemeng.1c01527