DOI QR코드

DOI QR Code

Effect of Metal Ni Atomic Layer Deposition Coating on Ni/YSZ, Anode of Solid Oxide Fuel Cells (SOFCs)

고체산화물 연료전지의 Anode인 Ni/YSZ에 Ni 원자층 증착 코팅의 효과

  • Kim, Jun Ho (School of Chemical Engineering, Chonnam National University) ;
  • Mo, Su In (School of Chemical Engineering, Chonnam National University) ;
  • Park, Gwang Seon (School of Chemical Engineering, Chonnam National University) ;
  • Kim, Hyung Soon (Haeyang Energy Co) ;
  • Kim, Do Heyoung (School of Chemical Engineering, Chonnam National University) ;
  • Yun, Jeong Woo (School of Chemical Engineering, Chonnam National University)
  • Received : 2022.03.16
  • Accepted : 2022.03.18
  • Published : 2022.03.30

Abstract

This study is to increase the surface area and maximize the effect of the catalyst by coating a nanometersized metal catalyst material on the anode layer using atomic layer deposition (ALD) technology. ALD process is known to produce uniform films with well-controlled thickness at the atomic level on substrates. We measured the performance by coating metals (Ni) on Ni/YSZ, which is the most widely known anode material for solid oxide fuel cells. ALD coatings began to show a decrease in cell performance over 3 nm coatings.

이 연구는 원자층 증착(Atomic Layer Deposition, ALD) 기술을 사용하여 나노미터 크기의 금속 촉매 물질을 연료극 층에 코팅하여 표면적을 늘리고 촉매의 효과를 극대화시키기 위한 연구이다. ALD 공정은 기판 위에 원자 수준에서 잘 제어된 두께를 갖는 균일한 막을 제조하는 것으로 알려져 있다. 우리는 고체산화물 연료전지의 연료극 물질로 가장 널리 알려진 Ni/YSZ 위에 금속(Ni)을 코팅하여 성능을 측정하였다. ALD 코팅은 3 nm 이상의 코팅에서 전지 성능의 감소를 보이기 시작했다

Keywords

Acknowledgement

이 연구는 2021년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구임('20012555').

References

  1. B. C. H. Steele and A. Heinzel, "Materials for fuel-cell technologies", Nature, 414(15), 345 (2001). https://doi.org/10.1038/35104620
  2. A. B. Stambouli and E. Traversa, "A primary study on a long-term vision and strategy for the realisation and the development of the Sahara Solar Breeder project in Algeria", Renew. Sust. Energ. Rev., 16(1), 591 (2012). https://doi.org/10.1016/j.rser.2011.08.025
  3. S. Mclntosh and R. J. Gorte, "Direct hydrocarbon solid oxide fuel cells", Chem. Rev., 104(10), 4845 (2004). https://doi.org/10.1021/cr020725g
  4. H. Mohammed, A. Al-Othman, P. Nancarrow, M. Tawalbeh and M. E. H. Assad, "Direct hydrocarbon fuel cells: A promising technology for improving energy efficiency", Energy, 172, 207 (2019). https://doi.org/10.1016/j.energy.2019.01.105
  5. D. K. Niakolas, "Sulfur poisoning of Ni-based anodes for Solid Oxide Fuel Cells in H/C-based fuels", Appl. Catal. A-Gen., 486, 123 (2014). https://doi.org/10.1016/j.apcata.2014.08.015
  6. T. Takeguchi, Y. Kani, T. Yana, R. Kikuchi, K. Eguchi, K. Tsujimoto, Y. Uchida, A. Ueno, K. Omoshiki and M. Aizawa, "Study on steam reforming of CH4 and C2 hydrocarbons and carbon deposition on Ni-YSZ cermets", J. Power. Sources, 112(2), 588 (2002). https://doi.org/10.1016/S0378-7753(02)00471-8
  7. J. B. Goodenough and Y. H. Huang, "Alternative anode materials for solid oxide fuel cells", J. Power. Sources, 173(1), 1 (2007). https://doi.org/10.1016/j.jpowsour.2007.08.011
  8. Y. Teraoka, H. M. Zhang, K. Okamoto and N. Yamazoe, "Mixed ionic-electronic conductivity of La1-xSrxCo1-yFeyO3-δ perovskite-type oxides", Mater. Res. Bull., 23(1), 51 (1988). https://doi.org/10.1016/0025-5408(88)90224-3
  9. D. P. Fagg, V. V. Kharton, J. R. Frade and A. A. L. Ferreira, "Stability and mixed ionic-electronic conductivity of (Sr, La)(Ti, Fe)O3-δ perovskites", Solid State Ionics 156(1-2), 45 (2003). https://doi.org/10.1016/S0167-2738(02)00257-6
  10. H. S. Kim, G. S. Kim, J. W. Yun, H. C. Ham, J. H. Jang, J. Han, S. W. Nam, Y. G. Shul and S. P. Yoon, "Pd catalyzed Sr0.92Y0.08TiO3-δ/Sm0.2Ce0.8O2-δ anodes in solid oxide fuel cells", Ceram. Int., 40(6), 8237 (2014). https://doi.org/10.1016/j.ceramint.2014.01.021
  11. E. K. Park, S. Lee and J. W. Yun, "Characteristics of Sr0.92Y0.08Ti1-yNiyO3-δ anode and Ni-infiltrated Sr0.92Y0.08TiO3-δ anode using CH4 fuel in solid oxide fuel cells." Appl. Surf. Sci., 429, 171 (2018). https://doi.org/10.1016/j.apsusc.2017.07.284
  12. J. M. Lee and J. W. Yun, "Characteristics of Sr0.92Y0.08Ti0.7Fe0.3O3-δ anode running on humidified methane fuel in solid oxide fuel cells", Ceram. Int., 42(7), 8698 (2016). https://doi.org/10.1016/j.ceramint.2016.02.104
  13. S. J. Lee, C. H. Kang, C. B. Chung and J. W. Yun, "Ce0.8Sm0.2O2 Sol-gel Modification on La0.8Sr0.2Mn0.8Cu0.2O3 Cathode for Intermediate Temperature Solid Oxide Fuel Cell", J. Microelectron. Packag. Soc., 22(4), 77 (2015). https://doi.org/10.6117/KMEPS.2015.22.4.077
  14. J. H. Kim, G. Y. Jang and J. W. Yun, "Characteristics of LaCo1-xNixO3-δ Coated on Ni/YSZ Anode using CH4 Fuel in Solid Oxide Fuel Cells," J. Electrochem. Sci. Te., 11(4), 336 (2020). https://doi.org/10.33961/jecst.2020.00843
  15. L. Yu, G. Wang, G. Wan, G. Wang, S. Lin, X. Li, K. Wang, Z. Bai and Y. Xiang, "Highly effective synthesis of NiO/CNT nanohybrids by atomic layer deposition for high-rate and long-life supercapacitors", Dalton Trans., 45(35), 13779 (2016). https://doi.org/10.1039/c6dt01927g
  16. A. G. Hufnagel, A. K. Henss, R. Hoffmann, O. E. O. Zeman, S. Haringer, D. F. Rohlfing and T. Bein, "Electron-Blocking and Oxygen Evolution Catalyst Layers by Plasma-Enhanced Atomic Layer Deposition of Nickel Oxide", Adv. Mater. Interfaces, 5(16), 1701531 (2018). https://doi.org/10.1002/admi.201701531
  17. D. Malwala and P. Gopinath, "Fabrication and characterization of poly (ethylene oxide) templated nickel oxide nanofibers for dye degradation", Environ. Sci.: Nano, 2(1), 78 (2015). https://doi.org/10.1039/C4EN00107A