DOI QR코드

DOI QR Code

Machine learning modeling and DOE-assisted optimization in synthesis of nanosilica particles via Stöber method

  • Moradi, Hiresh (Department of Environmental Engineering, Kwangwoon University) ;
  • Atashi, Peyman (Research and Development Department, Ghaffari Chemical Industries Corp.) ;
  • Amelirad, Omid (Department of Mechanical Engineering, Sharif University of Technology) ;
  • Yang, Jae-Kyu (Department of Environmental Engineering, Kwangwoon University) ;
  • Chang, Yoon-Young (Department of Environmental Engineering, Kwangwoon University) ;
  • Kamranifard, Telma (Research and Development Department, Ghaffari Chemical Industries Corp.)
  • 투고 : 2021.11.14
  • 심사 : 2022.01.26
  • 발행 : 2022.04.25

초록

Silica nanoparticles, which have a broad range of sizes and specific surface features, have been used in many industrial applications. This study was conducted to synthesize monodispersed silica nanoparticles directly from tetraethyl orthosilicate (TEOS) with an alkaline catalyst (NH3) based on the sol-gel process and the Stöber method. A central composite design (CCD) is used to build a second-order (quadratic) model for the response variables without requiring a complete three-level factorial experiment. The process was then optimized to achieve the minimum particle size with the lowest concentration of TEOS. Dynamic light scattering and scanning electron microscopy were used to analyze the size, dispersity, and morphology of the synthesized nanoparticles. After optimization, a confirmation test was carried out to evaluate the confidence level of the software prediction. The results revealed that the predicted optimization is consistent with experimental procedures, and the model is significant at the 95% confidence level.

키워드

과제정보

The authors are very grateful to the Korea Environment Industry & Technology Institute (research grant number: 2020002470002), Republic of Korea. The work reported in this paper was conducted during the sabbatical year of Kwangwoon University in 2021.

참고문헌

  1. Abraham, A., Pedregosa, F., Eickenberg, M., Gervais, P., Mueller, A., Kossaifi, J., Gramfort, A., Thirion, B. and Varoquaux, G. (2014), "Machine learning for neuroimaging with scikit-learn", Front. Neuroinform., 8, 14. https://doi.org/10.3389/fninf.2014.00014.
  2. Abulateefeh, S.R., Spain, S.G., Aylott, J.W., Chan, W.C., Garnett, M.C. and Alexander, C. (2011), "Thermoresponsive polymer colloids for drug delivery and cancer therapy", Macromol. Biosci., 11(12), 1722-1734. https://doi.org/10.1002/mabi.201100252.
  3. Acar, P. (2020), "Machine learning reinforced crystal plasticity modeling under experimental uncertainty", AIAA J., 58(8), 3569-3576. https://doi.org/10.2514/1.J059233
  4. Aelion, R., Loebel, A. and Eirich, F. (1950), "Hydrolysis of Ethyl Silicate*", J. Am. Chem. Soc., 72(12), 5705-5712. https://doi.org/10.1021/ja01168a090.
  5. Al-Furjan, M.S.H., Dehini, R., Khorami, M., Habibi, M. and won Jung, D. (2021), "On the dynamics of the ultra-fast rotating cantilever orthotropic piezoelectric nanodisk based on nonlocal strain gradient theory", Compos. Struct., 255, 112990. https://doi.org/10.1016/j.compstruct.2020.112990.
  6. Alipour, M., Torabi, M.A., Sareban, M., Lashini, H., Sadeghi, E., Fazaeli, A., Habibi, M. and Hashemi, R. (2020), "Finite element and experimental method for analyzing the effects of martensite morphologies on the formability of DP steels", Mech. Based Des. Struct., 48(5), 525-541. https://doi.org/10.1080/15397734.2019.1633343.
  7. Altintas, C., Altundal, O.F., Keskin, S. and Yildirim, R. (2021), "Machine Learning Meets with Metal Organic Frameworks for Gas Storage and Separation", J. Chem. Inf. Model., 61(5), 2131-2146. https://doi.org/10.1021/acs.jcim.1c00191.
  8. Amelirad, O. and Assempour, A. (2019), "Experimental and crystal plasticity evaluation of grain size effect on formability of austenitic stainless steel sheets", J. Manuf. Proc., 47, 310-323. https://doi.org/10.1016/j.jmapro.2019.09.035.
  9. Amelirad, O. and Assempour, A. (2021), "Coupled continuum damage mechanics and crystal plasticity model and its application in damage evolution in polycrystalline aggregates", Eng. Comput., 1-15. https://doi.org/10.1007/s00366-021-01346-2.
  10. Arani, A.G., Farazin, A. and Mohammadimehr, M. (2021), "The effect of nanoparticles on enhancement of the specific mechanical properties of the composite structures: A review research", Adv. Nano Res. 10(4), 327-337. https://doi.org/10.12989/ANR.2021.10.4.327.
  11. Bai, B., Nie, Q., Zhang, Y., Wang, X. and Hu, W. (2021), "Cotransport of heavy metals and SiO2 particles at different temperatures by seepage", J. Hydrol., 597, 125771. https://doi.org/10.1016/j.jhydrol.2020.125771.
  12. Bai, Y., Alzahrani, B., Baharom, S. and Habibi, M. (2020), "Semi-numerical simulation for vibrational responses of the viscoelastic imperfect annular system with honeycomb core under residual pressure", Eng. Comput., 1-26. https://doi.org/10.1007/s00366-020-01191-9.
  13. Bailey, J.K. and Mecartney, M.L. (1992), "Formation of colloidal silica particles from alkoxides", Colloid Surf., 63(1), 151-161. https://doi.org/10.1016/0166-6622(92)80081-C.
  14. Bergna, H.E. (2005), "The language of colloid science and silica chemistry", Colloid. Silica., 5-7. https://doi.org/10.1201/9781420028706-6.
  15. Bogush, G.H. and Zukoski, C.F. (1991), "Studies of the kinetics of the precipitation of uniform silica particles through the hydrolysis and condensation of silicon alkoxides", J. Colloid Interf. Sci., 142(1), 1-18. https://doi.org/10.1016/0021-9797(91)90029-8.
  16. Boukari, H., Lin, J.S. and Harris, M.T. (1997), "Probing the dynamics of the silica nanostructure formation and growth by SAXS", Chem. Mater., 9(11), 2376-2384. https://doi.org/10.1021/cm9702878.
  17. Cao, B., Adutwum, L.A., Oliynyk, A.O., Luber, E.J., Olsen, B.C., Mar, A. and Buriak, J.M. (2018), "How to optimize materials and devices via design of experiments and machine learning: Demonstration using organic photovoltaics", ACS Nano, 12(8), 7434-7444. https://doi.org/10.1021/acsnano.8b04726.
  18. Carcouet, C.C., van de Put, M.W., Mezari, B., Magusin, P.C., Laven, J., Bomans, P.H., Friedrich, H., Esteves, A.C., Sommerdijk, N.A., van Benthem, R.A. and de With, G. (2014), "Nucleation and growth of monodisperse silica nanoparticles", Nano Lett., 14(3), 1433-1438. https://doi.org/10.1021/nl404550d.
  19. Cerbelaud, M., Videcoq, A., Rossignol, F., Piechowiak, M.A., Bochicchio, D. and Ferrando, R. (2016), "Heteroaggregation of ceramic colloids in suspensions", Adv. Physi X, 2(1), 35-53. https://doi.org/10.1080/23746149.2016.1254064.
  20. Cheshmeh, E., Karbon, M., Eyvazian, A., Jung, D.W., Habibi, M. and Safarpour, M. (2020), "Buckling and vibration analysis of FG-CNTRC plate subjected to thermo-mechanical load based on higher order shear deformation theory", Mech. Based Des. Struct., 1-24. https://doi.org/10.1080/15397734.2020.1744005.
  21. Costa, C.A.R., Leite, C.A.P. and Galembeck, F. (2003), "Size dependence of Stober silica nanoparticle microchemistry", J. Phys. Chem. B, 107(20), 4747-4755. https://doi.org/10.1021/jp027525t.
  22. Crowson, M.G., Lin, V., Chen, J.M. and Chan, T.C.Y. (2020), "Machine learning and cochlear implantation-a structured review of opportunities and challenges", Otol. Neurotol., 41(1), e36-e45. https://doi.org/10.1097/MAO.0000000000002440.
  23. Curley, R., Holmes, J.D. and Flynn, E.J. (2021), "Can sustainable, monodisperse, spherical silica be produced from biomolecules? A review", Appl. Nanosci., 11(6), 1777-1804. https://doi.org/10.1007/s13204-021-01869-6.
  24. Dai, Z., Jiang, Z., Zhang, L. and Habibi, M. (2021a), "Frequency characteristics and sensitivity analysis of a size-dependent laminated nanoshell", Adv. Nano. Res., 10(2), 175-175. https://doi.org/10.12989/ANR.2021.10.2.175.
  25. Dai, Z., Zhang, L., Bolandi, S.Y. and Habibi, M. (2021b), "On the vibrations of the non-polynomial viscoelastic composite open-type shell under residual stresses", Compos. Struct., 263, 113599. https://doi.org/10.1016/j.compstruct.2021.113599.
  26. Dai, Z.C., Jiang, Z.Y., Zhang, L. and Habibi, M. (2021c), "Frequency characteristics and sensitivity analysis of a size-dependent laminated nanoshell", Adv Nano Res. 10(2), 175-189. https://doi.org/10.12989/anr.2021.10.2.175.
  27. de Moraes, A.C.P., Ribeiro, L.D.S., de Camargo, E.R. and Lacava, P.T. (2021), "The potential of nanomaterials associated with plant growth-promoting bacteria in agriculture", 3 Biotech., 11(7), 318. https://doi.org/10.1007/s13205-021-02870-0.
  28. Dickinson, E. (2015), "Colloids in food: Ingredients, structure, and stability", Ann. Rev. Food Sci. Technol., 6, 211-233. https://doi.org/10.1146/annurev-food-022814-015651.
  29. Ebrahimi, F., Mohammadi, K., Barouti, M.M. and Habibi, M. (2021), "Wave propagation analysis of a spinning porous graphene nanoplatelet-reinforced nanoshell", Wave. Random Complex Med., 31(6), 1655-1681. https://doi.org/10.1080/17455030.2019.1694729.
  30. Everett, D.H. (1972), "Manual of Symbols and Terminology for Physicochemical quantities and units, appendix II: Definitions, terminology and symbols in colloid and surface chemistry", Pure Appl. Chem., 31(4), 577-638. https://doi.org/10.1351/pac197231040577.
  31. Feng, T., Liu, N., Wang, S.J., Qin, C., Shi, S.W., Zeng, X.Y. and Liu, G. (2021), "Research on the dispersion of carbon nanotubes and their application in solution-processed polymeric matrix composites: A review", Adv. Nano. Res., 10(6), 559-576. https://doi.org/10.12989/anr.2021.10.6.559.
  32. Fhionnlaoich, N.M., Yang, Y., Qi, R., Galvanin, F. and Guldin, S. (2019), "DoE-It-Yourself: A case study for implementing design of experiments into nanoparticle synthesis", Chem. Eng. Ind. Chem., 2019. https://doi.org/10.26434/chemrxiv.8198420.v1.
  33. Finnie, K.S., Bartlett, J.R., Barbe, C.J. and Kong, L. (2007), "Formation of silica nanoparticles in microemulsions", Langmuir, 23(6), 3017-3024. https://doi.org/10.1021/la0624283.
  34. Fu, H., Gao, B., Hu, C., Liu, Z., Hu, L., Kan, J., Feng, Z. and Xing, P. (2021), "3D nitrogen-doped graphene created by the secondary intercalation of ethanol with enhanced specific capacity", Nanotechnology, 33(7). https://doi.org/10.1088/1361-6528/ac30c2.
  35. Fuertes, A.B., Valle-Vigon, P. and Sevilla, M. (2012), "One-step synthesis of silica@resorcinol-formaldehyde spheres and their application for the fabrication of polymer and carbon capsules", Chem. Commun., 48(49), 6124-6126. https://doi.org/10.1039/c2cc32552g.
  36. Ghabussi, A., Habibi, M., NoormohammadiArani, O., Shavalipour, A., Moayedi, H. and Safarpour, H. (2021), "Frequency characteristics of a viscoelastic graphene nanoplatelet-reinforced composite circular microplate", J. Vib. Control., 27(1-2), 101-118. https://doi.org/10.1177/1077546320923930.
  37. Ghazanfari, A., Soleimani, S.S., Keshavarzzadeh, M., Habibi, M., Assempuor, A. and Hashemi, R. (2020), "Prediction of FLD for sheet metal by considering through-thickness shear stresses", Mech. Based Des. Struct., 48(6), 755-772. https://doi.org/10.1080/15397734.2019.1662310.
  38. Giesche, H. (1994), "Synthesis of monodispersed silica powders I. Particle properties and reaction kinetics", J. Eur. Ceram. Soc., 14(3), 189-204. https://doi.org/10.1016/0955-2219(94)90087-6.
  39. Green, D.L., Lin, J.S., Lam, Y.F., Hu, M.Z.C., Schaefer, D.W. and Harris, M.T. (2003), "Size, volume fraction, and nucleation of Stober silica nanoparticles", J. Colloid Interf. Sci., 266(2), 346-358. https://doi.org/10.1016/s0021-9797(03)00610-6.
  40. Guo, S. and Wang, E. (2011), "Functional micro/nanostructures: Simple synthesis and application in sensors, fuel cells, and gene delivery", Accounts Chem. Res., 44(7), 491-500. https://doi.org/10.1021/AR200001M.
  41. Guo, J., Baharvand, A., Tazeddinova, D., Habibi, M., Safarpour, H., Roco-Videla, A. and Selmi, A. (2021a), "An intelligent computer method for vibration responses of the spinning multi-layer symmetric nanosystem using multi-physics modeling", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-021-01433-4.
  42. Guo, Y., Mi, H. and Habibi, M. (2021b), "Electromechanical energy absorption, resonance frequency, and low-velocity impact analysis of the piezoelectric doubly curved system", Mech. Syst. Signal Proc., 157, 107723. https://doi.org/10.1016/j.ymssp.2021.107723.
  43. Han, Y., Lu, Z., Teng, Z., Liang, J., Guo, Z., Wang, D., Han, M.Y. and Yang, W. (2017), "Unraveling the growth mechanism of silica particles in the Stober method: In situ seeded growth model", Langmuir, 33(23), 5879-5890. https://doi.org/10.1021/acs.langmuir.7b01140.
  44. Harris, M.T., Brunson, R.R. and Byers, C.H. (1990), "The base-catalyzed hydrolysis and condensation reactions of dilute and concentrated TEOS solutions", J. Non Cryst. Solids, 121(1), 397-403. https://doi.org/10.1016/0022-3093(90)90165-I.
  45. Hashemi, H.R., Alizadeh, A.A., Oyarhossein, M.A., Shavalipour, A., Makkiabadi, M. and Habibi, M. (2021), "Influence of imperfection on amplitude and resonance frequency of a reinforcement compositionally graded nanostructure", Wave. Random Complex Med., 31(6), 1340-1366. https://doi.org/10.1080/17455030.2019.1662968.
  46. He, S., Guo, F., Zou, Q. and Bioinformatics, H.J.C. (2020), "MRMD2.0: A python tool for machine learning with feature ranking and reduction", 15, 1-9. http://doi.org/10.2174/1574893615999200503030350.
  47. He, X., Ding, J., Habibi, M., Safarpour, H. and Safarpour, M. (2021), "Non-polynomial framework for bending responses of the multi-scale hybrid laminated nanocomposite reinforced circular/annular plate", Thin Wall. Struct., 166, 108019. https://doi.org/10.1016/j.tws.2021.108019.
  48. Hiszpanski, A.M., Gallagher, B., Chellappan, K., Li, P., Liu, S., Kim, H., Han, J., Kailkhura, B., Buttler, D.J. and Han, T.Y. (2020), "Nanomaterial synthesis insights from machine learning of scientific articles by extracting, structuring, and visualizing knowledge", J. Chem. Inf. Model., 60(6), 2876-2887. https://doi.org/10.1021/acs.jcim.0c00199.
  49. Hou, F., Wu, S., Moradi, Z. and Shafiei, N. (2021), "The computational modeling for the static analysis of axially functionally graded micro-cylindrical imperfect beam applying the computer simulation", Eng. Comput., 1-19. https://doi.org/10.1007/s00366-021-01456-x.
  50. Hu, J., Zhang, H., Li, Z., Zhao, C., Xu, Z. and Pan, Q. (2021), "Object traversing by monocular UAV in outdoor environment", Asian J. Control., 23(6), 2766-2775. https://doi.org/10.1002/asjc.2415.
  51. Huang, X., Hao, H., Oslub, K., Habibi, M. and Tounsi, A. (2021a), "Dynamic stability/instability simulation of the rotary size-dependent functionally graded microsystem", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-021-01399-3.
  52. Huang, X., Zhang, Y., Moradi, Z. and Shafiei, N. (2021b), "Computer simulation via a couple of homotopy perturbation methods and the generalized differential quadrature method for nonlinear vibration of functionally graded non-uniform micro-tube", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-021-01395-7.
  53. Huang, X., Zhu, Y., Vafaei, P., Moradi, Z. and Davoudi, M. (2021c), "An iterative simulation algorithm for large oscillation of the applicable 2D-electrical system on a complex nonlinear substrate", Eng. Comput., 1-13. https://doi.org/10.1007/s00366-021-01320-y.
  54. Huo, J., Zhang, G., Ghabussi, A. and Habibi, M. (2021), "Bending analysis of FG-GPLRC axisymmetric circular/annular sector plates by considering elastic foundation and horizontal friction force using 3D-poroelasticity theory", Compos. Struct., 276, 114438. https://doi.org/10.1016/j.compstruct.2021.114438.
  55. Jiang, S., Dyk, A.V., Maurice, A., Bohling, J., Fasano, D. and Brownell, S. (2017), "Design colloidal particle morphology and self-assembly for coating applications", Chem. Soc. Rev., 46(12), 3792-3807. https://doi.org/10.1039/C6CS00807K.
  56. Jiao, J., Ghoreishi, S.M., Moradi, Z. and Oslub, K. (2021), "Coupled particle swarm optimization method with genetic algorithm for the static-dynamic performance of the magneto-electro-elastic nanosystem", Eng. Comput., 1-15. https://doi.org/10.1007/s00366-021-01391-x.
  57. Jinnouchi, R. and Asahi, R. (2017), "Predicting catalytic activity of nanoparticles by a DFT-aided machine-learning algorithm", J. Phys. Chem. Lett., 8(17), 4279-4283. https://doi.org/10.1021/acs.jpclett.7b02010.
  58. Khademolhosseini, R., Jafari, A., Mousavi, S.M. and Manteghian, M. (2019), "Investigation of synergistic effects between silica nanoparticles, biosurfactant and salinity in simultaneous flooding for enhanced oil recovery", RSC Adv., 9(35), 20281-20294. https://doi.org/10.1039/C9RA02039J.
  59. Khezri, K., Saeedi, M. and Maleki Dizaj, S. (2018), "Application of nanoparticles in percutaneous delivery of active ingredients in cosmetic preparations", Biomed. Pharmacother., 106 1499-1505. https://doi.org/10.1016/J.BIOPHA.2018.07.084.
  60. Kim, J.W., Kim, L.U. and Kim, C.K. (2007), "Size control of silica nanoparticles and their surface treatment for fabrication of dental nanocomposites", Biomacromolecules, 8(1), 215-222. https://doi.org/10.1021/bm060560b.
  61. Kim, S. and Zukoski, C.F. (1990), "A model of growth by hetero-coagulation in seeded colloidal dispersions", J. Colloid Interf. Sci., 139(1), 198-212. https://doi.org/10.1016/0021-9797(90)90457-Y.
  62. Klemperer, W.G., Mainz, V.V. and Millar, D.M. (1986), "A solid state multinuclear magnetic resonance study of the sol-gel process using polysilicate precursors", MRS Online Proceedings Library, 73(1), 15-25. https://doi.org/10.1557/PROC-73-15.
  63. Kumar, Y., Gupta, A. and Tounsi, A. (2021), "Size-dependent vibration response of porous graded nanostructure with FEM and nonlocal continuum model", Adv Nano Res. 11(1), 1-17. https://doi.org/10.12989/anr.2021.11.1.001.
  64. LaMer, V.K. and Dinegar, R.H. (1950), "Theory, production and mechanism of formation of monodispersed hydrosols", J. Am. Chem. Soc., 72(11), 4847-4854. https://doi.org/10.1021/ja01167a0011.
  65. Lee, K., Look, J.L., Harris, M.T. and McCormick, A.V. (1997), "Assessing extreme models of the Stober synthesis using transients under a range of initial composition", J. Colloid Interf. Sci., 194(1), 78-88. https://doi.org/10.1006/jcis.1997.5089.
  66. Lee, K., Sathyagal, A.N. and McCormick, A.V. (1998), "A closer look at an aggregation model of the Stober process", Colloid Surfaces A, 144(1), 115-125. https://doi.org/10.1016/S0927-7757(98)00566-4.
  67. Li, B., Xiao, G., Lu, R., Deng, R. and Bao, H. (2020a), "On feasibility and limitations of detecting false data injection attacks on power grid state estimation using D-facts devices", IEEE T. Ind. Inform., 16(2), 854-864. https://doi.org/10.1109/TII.2019.2922215.
  68. Li, J., Tang, F. and Habibi, M. (2020b), "Bi-directional thermal buckling and resonance frequency characteristics of a GNP-reinforced composite nanostructure", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-020-01110-y.
  69. Li, Y., Li, S., Guo, K., Fang, X. and Habibi, M. (2020c), "On the modeling of bending responses of graphene-reinforced higher order annular plate via two-dimensional continuum mechanics approach", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-020-01166-w.
  70. Li, Y., Macdonald, D.D., Yang, J., Qiu, J. and Wang, S. (2020d), "Point defect model for the corrosion of steels in supercritical water: Part I, film growth kinetics", Corros. Sci., 163, 108280. https://doi.org/10.1016/j.corsci.2019.108280.
  71. Liu, J., Qiao, S. Z., Liu, H., Chen, J., Orpe, A., Zhao, D. and Lu, G.Q. (2011), "Extension of the Stober method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres", Angewandte Chemie, 50(26), 5947-5951. https://doi.org/10.1002/ANIE.201102011.
  72. Liu, H., Shen, S., Oslub, K., Habibi, M. and Safarpour, H. (2021a), "Amplitude motion and frequency simulation of a composite viscoelastic microsystem within modified couple stress elasticity", Eng. Comput., 1-15. https://doi.org/10.1007/s00366-021-01316-8.
  73. Liu, H., Zhao, Y., Pishbin, M., Habibi, M., Bashir, M.O. and Issakhov, A. (2021b), "A comprehensive mathematical simulation of the composite size-dependent rotary 3D microsystem via two-dimensional generalized differential quadrature method", Eng. Comput., 1-16. https://doi.org/10.1007/s00366-021-01419-2.
  74. Liu, Y., Wang, W., He, T., Moradi, Z. and Larco Benitez, M.A. (2021c), "On the modelling of the vibration behaviors via discrete singular convolution method for a high-order sector annular system", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-021-01454-z.
  75. Liu, Z., Su, S., Xi, D. and Habibi, M. (2020a), "Vibrational responses of a MHC viscoelastic thick annular plate in thermal environment using GDQ method", Mech. Based Des. Struct., 1-26. https://doi.org/10.1080/15397734.2020.1784201.
  76. Liu, Z., Wu, X., Yu, M. and Habibi, M. (2020b), "Large-amplitude dynamical behavior of multilayer graphene platelets reinforced nanocomposite annular plate under thermo-mechanical loadings", Mech. Based Des. Struct., 1-25. https://doi.org/10.1080/15397734.2020.1815544.
  77. Ma, L., Liu, X. and Moradi, Z. (2021a), "On the chaotic behavior of graphene-reinforced annular systems under harmonic excitation", Eng. Comput., 1-25. https://doi.org/10.1007/s00366-020-01210-9.
  78. Ma, Z., Zheng, W., Chen, X. and Yin, L. (2021b), "Joint embedding VQA model based on dynamic word vector", Peer J. Comput. Sci., 7, e353. https://doi.org/10.7717/peerj-cs.353.
  79. Matsoukas, T. and Gulari, E. (1988), "Dynamics of growth of silica particles from ammonia-catalyzed hydrolysis of tetra-ethyl-orthosilicate", J. Colloid Interf. Sci., 124(1), 252-261. https://doi.org/10.1016/0021-9797(88)90346-3.
  80. Moayedi, H., Aliakbarlou, H., Jebeli, M., Noormohammadiarani, O., Habibi, M., Safarpour, H. and Foong, L.K. (2020a), "Thermal buckling responses of a graphene reinforced composite micropanel structure", Int. J. Appl. Mech., 12(1), 2050010. https://doi.org/10.1142/s1758825120500106.
  81. Moayedi, H., Darabi, R., Ghabussi, A., Habibi, M. and Foong, L.K. (2020b), "Weld orientation effects on the formability of tailor welded thin steel sheets", Thin Wall. Struct., 149, 106669. https://doi.org/10.1016/j.tws.2020.106669.
  82. Moayedi, H., Ebrahimi, F., Habibi, M., Safarpour, H. and Foong, L.K. (2021), "Application of nonlocal strain-stress gradient theory and GDQEM for thermo-vibration responses of a laminated composite nanoshell", Eng. Comput., 37(4), 3359-3374. https://doi.org/10.1007/s00366-020-01002-1.
  83. Moradi, Z., Davoudi, M., Ebrahimi, F. and Ehyaei, A.F. (2021), "Intelligent wave dispersion control of an inhomogeneous micro-shell using a proportional-derivative smart controller", Wave. Random Complex Med., 1-24. https://doi.org/10.1080/17455030.2021.1926572.
  84. Najaafi, N., Jamali, M., Habibi, M., Sadeghi, S., Jung, D.W. and Nabipour, N. (2021), "Dynamic instability responses of the substructure living biological cells in the cytoplasm environment using stress-strain size-dependent theory", J. Biomol. Struct. Dyn., 39(7), 2543-2554. https://doi.org/10.1080/07391102.2020.1751297.
  85. Nezadi, M., Keshvari, H. and Yousefzadeh, M. (2021), "Using Taguchi design of experiments for the optimization of electrospun thermoplastic polyurethane scaffolds", Adv. Nano Res., 10(1), 59-69. https://doi.org/10.12989/anr.2021.10.1.059.
  86. Oyarhossein, M.A., Alizadeh, A.A., Habibi, M., Makkiabadi, M., Daman, M., Safarpour, H. and Jung, D.W. (2020), "Dynamic response of the nonlocal strain-stress gradient in laminated polymer composites microtubes", Sci. Rep., 10(1), 5616. https://doi.org/10.1038/s41598-020-61855-w.
  87. Peng, D., Chen, S., Darabi, R., Ghabussi, A. and Habibi, M. (2021), "Prediction of the bending and out-of-plane loading effects on formability response of the steel sheets", Arch. Civil Mech. Eng., 21(2), 74. https://doi.org/10.1007/s43452-021-00227-1.
  88. Polte, J. (2015), "Fundamental growth principles of colloidal metal nanoparticles - a new perspective", Cryst. Eng. Comm., 17(36), 6809-6830. https://doi.org/10.1039/C5CE01014D.
  89. Prabha, S., Durgalakshmi, D., Rajendran, S. and Lichtfouse, E. (2021), "Plant-derived silica nanoparticles and composites for biosensors, bioimaging, drug delivery and supercapacitors: A review", Environ. Chem. Lett., 19(2), 1667-1691. https://doi.org/10.1007/S10311-020-01123-5.
  90. Qiao, G., Ding, L., Zhang, L. and Yan, H. (2021), "Accessible tourism: A bibliometric review (2008-2020)", Tourism Review. https://doi.org/10.1108/TR-12-2020-0619.
  91. Rahman, I.A., Vejayakumaran, P., Sipaut, C.S., Ismail, J., Bakar, M.A., Adnan, R. and Chee, C.K. (2007), "An optimized sol-gel synthesis of stable primary equivalent silica particles", Colloid Surfaces A, 1-3(294), 102-110. https://doi.org/10.1016/J.COLSURFA.2006.08.001.
  92. Rao, K.S., El-Hami, K., Kodaki, T., Matsushige, K. and Makino, K. (2005), "A novel method for synthesis of silica nanoparticles", J. Colloid. Interf. Sci., 289(1), 125-131. https://doi.org/10.1016/j.jcis.2005.02.019.
  93. Shah, A.H. and Rather, M.A. (2021), "Pharmaceutical residues: New emerging contaminants and their mitigation by nano-photocatalysis", Adv. Nano Res., 10(4), 397-414. https://doi.org/10.12989/anr.2021.10.4.397.
  94. Shao, Y., Zhao, Y., Gao, J. and Habibi, M. (2021), "Energy absorption of the strengthened viscoelastic multi-curved composite panel under friction force", Arch. Civil Mech. Eng., 21(4), 141. https://doi.org/10.1007/s43452-021-00279-3.
  95. Shariati, A., Jung, D.W., Mohammad-Sedighi, H., Zur, K.K., Habibi, M. and Safa, M. (2020), "Stability and dynamics of viscoelastic moving rayleigh beams with an asymmetrical distribution of material parameters", Symmetry, 12(4), 586. https://doi.org/10.3390/sym12040586.
  96. Shariati, A., Habibi, M., Tounsi, A., Safarpour, H. and Safa, M. (2021), "Application of exact continuum size-dependent theory for stability and frequency analysis of a curved cantilevered microtubule by considering viscoelastic properties", Eng. Comput., 37(4), 3629-3648. https://doi.org/10.1007/s00366-020-01024-9.
  97. Shi, X., Li, J. and Habibi, M. (2020), "On the statics and dynamics of an electro-thermo-mechanically porous GPLRC nanoshell conveying fluid flow", Mech. Based Des. Struct., 1-37. https://doi.org/10.1080/15397734.2020.1772088.
  98. Stober, W., Fink, A. and Bohn, E. (1968), "Controlled growth of monodisperse silica spheres in the micron size range", J. Colloid Interf. Sci., 26(1), 62-69. https://doi.org/10.1016/0021-9797(68)90272-5.
  99. Sun, J., Wang, Y., Liu, S., Dehghani, A., Xiang, X., Wei, J. and Wang, X. (2021), "Mechanical, chemical and hydrothermal activation for waste glass reinforced cement", Constr. Build. Mater., 301, 124361. https://doi.org/10.1016/j.conbuildmat.2021.124361.
  100. Svirbely, W.J. and Mador, I.L. (1950), "Kinetics of the alkaline hydrolysis of monoethyl malonate ion", J. Am. Chem. Soc., 72(12), 5699-5705. https://doi.org/10.1021/JA01168A089.
  101. Tan, C.G., Bowen, B.D. and Epstein, N. (1987), "Production of monodisperse colloidal silica spheres: Effect of temperature", J. Colloid Interf. Sci., 118(1), 290-293. https://doi.org/10.1016/0021-9797(87)90458-9.
  102. Tian, H., Wang, T., Zhang, F., Zhao, S., Wan, S., He, F. and Wang, G. (2018), "Tunable porous carbon spheres for high-performance rechargeable batteries", J. Mater. Chem. A., 6(27), 12816-12841. https://doi.org/10.1039/C8TA02353K.
  103. Ways, M.T.M., Ng, K.W., Lau, W.M. and Khutoryanskiy, V.V. (2020), "Silica nanoparticles in transmucosal drug delivery", Pharmaceutics, 12(8), 1-25. https://doi.org/10.3390/pharmaceutics12080751.
  104. van Blaaderen, A. and Kentgens, A.P.M. (1992), "Particle morphology and chemical microstructure of colloidal silica spheres made from alkoxysilanes", J. Non Cryst. Solid., 149(3), 161-178. https://doi.org/10.1016/0022-3093(92)90064-q.
  105. van Blaaderen, A., Van Geest, J. and Vrij, A. (1992), "Monodisperse colloidal silica spheres from tetraalkoxysilanes: Particle formation and growth mechanism", J. Colloid Interf. Sci., 154(2), 481-501. https://doi.org/10.1016/0021-9797(92)90163-g.
  106. van Helden, A.K., Jansen, J.W. and Vrij, A. (1981), "Preparation and characterization of spherical monodisperse silica dispersions in nonaqueous solvents", J. Colloid Interf. Sci., 81(2), 354-368. https://doi.org/10.1016/0021-9797(81)90417-3.
  107. Wang, T., Liu, W., Zhao, J., Guo, X. and Terzija, V. (2020a), "A rough set-based bio-inspired fault diagnosis method for electrical substations", Int. J. Electr. Power., 119, 105961. https://doi.org/10.1016/j.ijepes.2020.105961.
  108. Wang, Z., Yu, S., Xiao, Z. and Habibi, M. (2020b), "Frequency and buckling responses of a high-speed rotating fiber metal laminated cantilevered microdisk", Mech. Adv. Mater. Struct., 1-14. https://doi.org/10.1080/15376494.2020.1824284.
  109. Wu, J. and Habibi, M. (2021), "Dynamic simulation of the ultra-fast-rotating sandwich cantilever disk via finite element and semi-numerical methods", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-021-01396-6.
  110. Xiong, Q.M., Chen, Z., Huang, J.T., Zhang, M., Song, H., Hou, X.F., Li, X.B. and Feng, Z.J. (2020), "Preparation, structure and mechanical properties of Sialon ceramics by transition metal-catalyzed nitriding reaction", Rare Metals. 39(5), 589-596. https://doi.org/10.1007/s12598-020-01385-6.
  111. Xu, W., Pan, G., Moradi, Z. and Shafiei, N. (2021), "Nonlinear forced vibration analysis of functionally graded non-uniform cylindrical microbeams applying the semi-analytical solution", Compos. Struct., 275, 114395. https://doi.org/10.1016/j.compstruct.2021.114395.
  112. Xu, X., Wang, C. and Zhou, P. (2021), "GVRP considered oil-gas recovery in refined oil distribution: From an environmental perspective", Int. J. Prod. Econ., 235, 108078. http://doi.org/10.1016/j.ijpe.2021.108078.
  113. Yang, X., Liu, X., Zhang, A., Lu, D., Li, G., Zhang, Q., Liu, Q. and Jiang, G. (2019), "Distinguishing the sources of silica nanoparticles by dual isotopic fingerprinting and machine learning", Nature Commun., 10(1), 1-9. https://doi.org/10.1038/s41467-019-09629-5.
  114. Yu, X., Maalla, A. and Moradi, Z. (2022), "Electroelastic high-order computational continuum strategy for critical voltage and frequency of piezoelectric NEMS via modified multi-physical couple stress theory", Mech. Syst. Signal Proc., 165, 108373. https://doi.org/10.1016/j.ymssp.2021.108373.
  115. Zhang, X., Tang, Y., Zhang, F. and Lee, C.S. (2016), "A novel aluminum-graphite dual-ion battery", Adv. Energy Mater., 6(11), 1502588. https://doi.org/10.1002/aenm.201502588.
  116. Zhang, L., Chen, Z., Habibi, M., Ghabussi, A. and Alyousef, R. (2021a), "Low-velocity impact, resonance, and frequency responses of FG-GPLRC viscoelastic doubly curved panel", Compos. Struct., 269, 114000. https://doi.org/10.1016/j.compstruct.2021.114000.
  117. Zhang, X., Shamsodin, M., Wang, H., NoormohammadiArani, O., Khan, A.M., Habibi, M. and Al-Furjan, M.S.H. (2021b), "Dynamic information of the time-dependent tobullian biomolecular structure using a high-accuracy size-dependent theory", J. Biomol. Struct. Dyn., 39(9), 3128-3143. https://doi.org/10.1080/07391102.2020.1760939.
  118. Zhang, Y., Wang, Z., Tazeddinova, D., Ebrahimi, F., Habibi, M. and Safarpour, H. (2021c), "Enhancing active vibration control performances in a smart rotary sandwich thick nanostructure conveying viscous fluid flow by a PD controller", Wave. Random Complex Med., 1-24. https://doi.org/10.1080/17455030.2021.1948627.
  119. Zhang, T., Wu, X., Shaheen, S.M., Abdelrahman, H., Ali, E.F., Bolan, N.S., Ok, Y.S., Li, G., Tsang, D.C.W. and Rinklebe, J. (2022), "Improving the humification and phosphorus flow during swine manure composting: A trial for enhancing the beneficial applications of hazardous biowastes", J. Hazard. Mater., 425, 127906. https://doi.org/10.1016/j.jhazmat.2021.127906.
  120. Zhao, Y., Moradi, Z., Davoudi, M. and Zhuang, J. (2021), "Bending and stress responses of the hybrid axisymmetric system via state-space method and 3D-elasticity theory", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-020-01242-1.
  121. Zhou, C., Zhao, Y., Zhang, J., Fang, Y. and Habibi, M. (2020), "Vibrational characteristics of multi-phase nanocomposite reinforced circular/annular system", Adv. Nano Res., 9(4), 295-295. https://doi.org/10.12989/ANR.2020.9.4.295.
  122. Zhu, H., Zhu, J., Zhang, Z. and Zhao, R. (2021), "Crossover from linear chains to a honeycomb network for the nucleation of hexagonal boron nitride grown on the Ni(111) surface", J. Phys. Chem. C, 125(48), 26542-26551. https://doi.org/10.1021/acs.jpcc.1c09334.