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Abstract

The reinforcement learning algorithm has proven its potential in solving sequential decision-making problems under uncertainties,

such as finding paths to route data packets in wireless sensor networks. With reinforcement learning, the computation of the

optimum path requires careful definition of the so-called reward function, which is defined as a linear function that aggregates

multiple objective functions into a single objective to compute a numerical value (reward) to be maximized. In a typical defined

linear reward function, the multiple objectives to be optimized are integrated in the form of a weighted sum with fixed weighting

factors for all learning agents. This study proposes a reinforcement learning -based routing protocol for wireless sensor network,

where different learning agents prioritize different objective goals by assigning weighting factors to the aggregated objectives of the

reward function. We assign appropriate weighting factors to the objectives in the reward function of a sensor node according to its

hop-count distance to the sink node. We expect this approach to enhance the effectiveness of multi-objective reinforcement learning

for wireless sensor networks with a balanced trade-off among competing parameters. Furthermore, we propose SDN (Software

Defined Networks) architecture with multiple controllers for constant network monitoring to allow learning agents to adapt

according to the dynamics of the network conditions. Simulation results show that our proposed scheme enhances the performance

of wireless sensor network under varied conditions, such as the node density and traffic intensity, with a good trade-off among

competing performance metrics.

Index Terms: Reinforcement learning, Wireless sensor networks, Software defined networks, Q-routing

I. INTRODUCTION

A wireless sensor network (WSN) is a network composed

of a large number of compact, low-cost, low-power, multi-

functional sensor nodes that communicate wirelessly over

short distances to share information, such as collected data

and positions etc [1-2]. In WSN, the sensor nodes, which are

extensively used for monitoring and surveillance tasks, are

generally randomly deployed in the field of interest [3].

Depending on the specific application scenario, WSNs may

rely on diverse performance metrics to be optimized. For

example, energy efficiency and network lifetime are major

concerns in WSN. Energy is a vital factor in WSN because

the sensor nodes are typically powered by batteries, whose

replacement is often difficult. Furthermore, the network cov-

erage, latency, and fairness among the sensor nodes are

important for maintaining the quality of service (QoS) [4-5].

In practice, when these metrics are simultaneously consid-

ered for optimization, they tend to conflict with each other.

For that matter, carefully consideration of the parameter

   
22

Received 04 December 2021, Revised 10 January 2022, Accepted 12 January 2022
*Corresponding Author Jinsoo Jang and Ki-Il Kim (E-mail: jisjang@cnu.ac.kr and kikim@cnu.ac.kr, Tel: +82-42-821-6275 and +82-42-821-6856)
Department of Computer Science and Engineering, Chungnam National University, Daejeon 34134, Korea.

https://doi.org/10.6109/jicce.2022.20.1.22 print ISSN: 2234-8255 online ISSN: 2234-8883

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-
nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Copyright ⓒ The Korea Institute of Information and Communication Engineering 

 

 

https://orcid.org/0000-0003-4406-6397
https://orcid.org/0000-0003-2070-2408
https://orcid.org/0000-0002-8366-3533


Weight Adjustment Scheme Based on Hop Count in Q-routing for Software Defined Networks-enabled Wireless Sensor Networks
tradeoffs is of significant importance to achieve a better

overall performance of the WSN in real applications. In real-

ity, most real-world problems involve multiple objectives,

and all objectives need to be optimized simultaneously.

However, it is certain that the simultaneous optimization of

multiple objectives is a complex task because, in most cases,

the multiple objectives conflict with each other. To solve

multi-objective optimization (MOO), methods such as the

weighted sum [6], lexicographic [7], evolutionary algorithms

[8], and the ε-constraints [9] have been applied. As in many

other fields, MOO has attracted considerable attention in the

field of WSN [10].

With the help of recent advances in machine learning

(ML) and artificial intelligence applications, a combination

of MOO techniques and ML has been used to determine the

best global optimal solutions with a well-balanced trade-off

among the competing objectives [11]. One of the commonly

used ML algorithms for finding optimal solutions through

sequential decision-making is reinforcement learning (RL).

This subfield of machine learning was first applied in the

network field by the work done by Boyan and Littman [12].

It is preferred when solving routing problems in dynamic

network conditions compared to supervised and unsuper-

vised learning [13] because it does not require a fed dataset

collected through measurements to operate. In their work,

they proposed Q-routing for optimizing routing decisions in

networks based on the concept of Q-learning proposed by

Watkins [14]. Q-routing has been successfully applied in

solving optimization problems in WSN, such as network

power [15] and quality of service [16]. To achieve MOO

with RL, most previous studies designed the reward function

by transforming multiple objective functions into a single

aggregated objective function by multiplying each objective

function by a weighting factor and summing up all weighted

objective functions to give a value (reward) that estimates

the significance of the previous action taken. A typical

reward function (rt) is defined in linear form as follows: 

(1)

where wi (i = 1,…,m) is a fixed weighting factor for the ith

objective function determined by the decision maker. Mean-

while Σ
n
i=1wi = 1 and 0 ≤ wi ≤ 1. Therefore, this study

approached the MOO problem with a fair trade-off by

assigning different weighting factors to the reward function

of the learning agent according to its respective hop-count

distance to the sink node. The remainder of this paper is

organized as follows. Section II discusses our proposed

approach to tackle the MOO problem. Section III provides

the experimental results, and Section IV presents the conclu-

sions and ideas for future studies based on the current

results.

II. THE PROPOSED SCHEME

A. Multi-controller SDN Architecture

In this subsection, we first introduce the basic concept of

the software-defined networking (SDN) paradigm and then

provide details on our proposed SDN architecture as imple-

mented in our work. SDN is a novel network paradigm that

was introduced to enable flexible network management by

breaking the network into three layers: the data plane, con-

trol plane, and application plane. Several works have been

done to propose the implementation of SDN in wireless sen-

sor networks [17]. In the presence of SDN architecture, sen-

sor nodes do not make routing decisions; they only forward

and drop data packets according to the rules set by the con-

troller.

To implement the proposed scheme, we designed a hierar-

chical SDN architecture with multiple controllers. Fig. 1

shows a simplified representation of the proposed hierarchi-

cal multi-controller SDN platform. We grouped the individ-

ual sensor nodes according to their respective hop count

distance to the sink node and assigned a single controller

(domain controller) per group. 

A domain controller monitors and collects raw data from

all sensor nodes belonging to its group. Domain monitoring

by multiple controllers is preferred over a single-controller

approach to avoid scalability problems, which are expected

to occur because of the storage space required by the learn-

ing agent. Having full access to the nodes, a domain control-

ler can directly install/delete forwarding paths on all

corresponding sensors in its domain. At the top of the hierar-

chy, we have a single controller, the super controller, which

has the ability to communicate directly with all the domain

controllers. The main task of the super controller is to

employ the RL algorithm to compute the best paths for data

transmission according to the information collected and pre-

processed by the domain controllers.

 

Fig. 1. Hierarchical multi-controller SDN platform.
23 http://jicce.org



J. lnf. Commun. Converg. Eng. 20(1): 22-30, Mar. 2022 
B. Design of SDN routing

The number of existing studies that have attempted to

solve the SDN flow-routing problem using a reinforcement

learning agent that computes efficient paths is very limited

for practical design. Therefore, our study approaches this

problem based on the simple exchange of simple messages.

To effectively represent the flow-routing problem for pro-

cessing by a reinforcement learning agent, we present the

design of the states and actions in Section II-C (1). 

Fig. 2 below depicts the design and implementation of our

proposed scheme focusing on the interaction and exchange

of information among the three layers of the SDN platform.

Further details on its operation are as follows. ① The control

plane discovers the network topology created by the sensor

nodes belonging to a domain group and stores it at the

domain controller. ② Each domain controller collects raw

data about the created network topology by periodically que-

rying the data plane. ③ The domain routing module calcu-

lates and stores the link-state information according to the

collected raw data information. ④ Based on the collected

raw data and updated link-state information, an RL agent at

the application plane learns about the environment thereby

exploring all the possible routes for all the source-destination

pairs and exploiting the experience by selecting the best

path(s) to route the data packets. ⑤ The super controller

stores the best routing decisions in the global routing table.

⑥ The control plane through its domain controllers, retrieves

the updated route information and installs paths in the flow

table of the sensor nodes belonging to its group. It should be

noted that the route information can be retrieved by the con-

trol plane proactively or on demand through message

exchange (Domain Update Request and Reply) between the

domain controller and super controller.

Our proposed approach reacts quickly to sudden network

changes by allowing sensors to make routing decisions based

on exchanged local information, without additional queries

from the controller.

C. RL-based Q-routing for WSN

To implement our RL-based routing scheme with hetero-

geneous reward functions, we first identify the major objec-

tives that the sensor nodes in their respective groups aim to

optimize for maximum efficient. The objectives are:

① Efficiency energy consumption: Finding paths composed

of nodes with sufficient energy to deliver data packets

successfully to the sink node.

② Data transfer with low latency: Avoid selection of con-

gested nodes as they may lead increased delay of data

flow.

③ Successful data delivery: Select nodes with links that

can guarantee successful transmission of data packets.

1) The Proposed Q-routing Scheme

In WSNs, when a sensor node generates or receives a

packet, it needs to send the packet to the sink node. If the

sensor node cannot reach the sink node directly, it is neces-

sary to select one of its neighbors to forward the packet.

How to select neighbor nodes is a routing problem, and the

routing problem can be considered as a Markov decision

process (MDP) and such problems can be solved by the RL

algorithm [18]. An RL task is described as an MDP (S ; A ;

P ; R), in which S denotes the set of possible states, A indi-

cates the set of possible actions, P represents the probability

of state transition, and R symbolizes the environmental

reward. The RL agent performing Q-learning attempts to

find the optimal action-value function Qn(Sn , An) which esti-

mates how good it is to perform a given action in a given

state. To find the optimal action-value function, an agent vis-

its all action-state space within the pre-defined number of

episodes as it transfers from an initial state (source node) to

the final state (sink node). So, an agent perceives the current

state of the environment and selects an action from amongst

the available actions in the action space based on the current

policy. Once taking an action, the agent will receive a

reward from the environment. According to the reward, the

agent updates its policy. In our protocol, the algorithm of RL

is used and the following measures are taken to achieve the

desired performance:

① In the definition of reward function, the optimization

objectives as described before, are considered in an

attempt achieve multi-objective optimization routing

with fair trade-off.

② In the RL-based routing, sensor nodes do not necessar-

ily need the global network information to react to sud-

den flow change. A sensor node is capable of selecting

the best next-hop based on locally exchanged informa-

tion with smaller costs.

To implement the RL based routing, we need to define the

following; the state space (S), action space (A), the reward

function (R) and optimal policy (P).
Fig. 2. Interaction of layers in our proposed hierarchical SDN controller

architecture.
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a) The state space

In our work, we define each State in the State Space as

referring to a data packet in a node, and a transition from

one State to another corresponds to a data packet being for-

warded from one node to the next. Therefore, the cardinality

of the set of States in the State Space is |S|≡K, where K is the

number of all nodes with at least a single active link to the

neighbor node. 

b) The action space

We present the action space to refer to the set of all possi-

ble actions from any given state. At any given state Si, the

RL agent at state i takes one action (select next hop j) and

forward the data packet as the state of that packet transfer to

the new state Sj. For that matter, when at a given state Si, the

number of potential actions from that state corresponds to

the node degree of node i.

c) The reward function

To estimate the Q-value, we must define the reward func-

tion to indicate how well an agent is doing at timestamp t as

the previous state si transfer to the next state sj. We define

the reward function as an integration of multiple single

objective functions with their respective weighting factor.

Each single objective function is aiming at optimizing an

objective, which is either energy efficient, congestion avoid-

ance or select links with relatively good qualities. We define

the reward function as a directly proportional variable to the

objective functions as shown in expression 2 below:

(2)

whereby Ej and Eini are the remained energy and initial

energy units of node j respectively measured in unit Joule.

Qj and Qmax represent the available queue size and the maxi-

mum queue size of node j respectively. The parameter LQij

estimates the current quality of the received information

through the link between node i and j. To estimate the link

quality, we use the received signal strength indicator (RSSI)

parameter which is very effective in estimating the received

signal power of the communication channel. Furthermore,

link quality can be estimated by observing link behavior

using another commonly used parameter, the link quality

indicator (LQI). LQI parameter is proportional to the rate of

successfully received packets as estimated by the packet

receiving node through passive monitoring is efficient at filter-

ing the transient fluctuation of the packet receiving rate (PRR)

[19]. To compute the average of the data reception rate from

node i to node j (LQij) we use the below expression 3:

(3)

Whereby the LQIij
t  is the updated estimate value of the link

quality indicator between node i and j, the LQIij
t −1 is the pre-

viously measured LQI, δ[0..1] determines the historical impor-

tance. Since the RSSI and LQI metrics are correlated with the

goodness of a signal, we use a combined value to predict the

link quality (LQ) dynamics as in expression 4 below;

(4)

The PRR for the link between node i and j is periodically

computed and sent back to the packer sender as feedback uni-

cast message. The packet sender updates the RSSI value

according to the received signal strength of the ACK message.

(5)

d) The optimal policy: 

We define the policy which aims at maximizing the long-

term reward as the agent learns about the environment. Max-

imizing the reward means, finding routes with sufficient

energy, less congestion and better packet delivery ratio. To

compute and update the Q-value representing optimal rout-

ing information of every iteration time, we use the update

rule as shown below

From the expression above, the updated Q-value Qn(Sn ,

An) depends on the previous Q-value Qn-1(Sn , An), the imme-

diate estimated reward Rn and the cumulative value of maxi-

mum future rewards Q(Sn+1, An+1 ) from the current

state to the final state. The learning rate α and the discount

factor γ are variables ranging 0~1 determining how fast the

Q-value changes and how important future reward are respec-

tively. Our proposed Q-routing scheme employs the so-called

ε-greedy or randomized learning method to achieve the trade-

off between the explore and exploit processes in the solution

space where ε ∈ [0,1]. With this approach, our learning agent

exploit the already learnt experience with a probability of ε

and explore with a probability of 1-ε. Additionally, to enable

proactive update of the Q-values, wireless sensor nodes are

allowed to periodically exchange local information by using

beacon control messages. The control messages carry informa-

tion such as the node ID, node group ID, node residual energy

and the degree of congestion on a that particular node.

2) Per-hop Objective Priority Adjustment Scheme

To implement our proposed scheme, we assign different

weighting factors on the objective functions at the reward

function as per group ID. Sensor nodes belonging to the

same group all have the same minimum hop-count to the

sink node. Fig. 3 below shows, how we group sensor nodes

intro groups with each group having its own domain control-

ler, with additional controller monitoring the source node`s

group and sink node group.

We assign the weight factor as summarized on Table 1. It

 

 

 

 

max
An 1+
25 http://jicce.org



J. lnf. Commun. Converg. Eng. 20(1): 22-30, Mar. 2022 
can be seen from Table 1 below; we group the sensor nodes

into 3 groups, in such a way that the maximum possible hop-

count for a single path is 4 hops away between a source and

sink node. We apply the above ratios for the following reasons:

a) Group 1

Here we assign the link quality as the most dominant fac-

tor followed by congestion and energy in that order. This is

because unlike other groups, sensor nodes in this group are

required to have relatively good packet reception rate since

they are the only ones that connects the rest of the nodes

with the rest of the intermediate nodes, in addition to that

they are required to be less congested as source node(s)

could be sending burst data flow. 

b) Group 2

Middle group sensor nodes are subjected to multiple

incoming data flow from group one sensor nodes. For that

reason, congestion is the most important factor that should

be considered here followed by sufficient energy required to

process the incoming traffic and overhead messages from

both group 1 and group 3. 

c) Group 3

In this particular group, sensor nodes are required to have

sufficient energy to send data packets to the sink node. Sec-

ond to that is the link quality between the sensor nodes and

the sink node. This is an important fact to be considered as it

accounts for the return of the optimum maximum reward

from the sink node.

3) Next Hop Selection

To select an action A from among the available set of action

given the current state, the RL-agent during each learning epi-

sode generates a random value r ∈ [0,1]. If r > ε, the agent

explores; otherwise exploits. This is the defined policy for action

selection by the RL-agent, and we summarize here below;

(6)

The general process of our proposed Q-routing based scheme

is explained in Algorithm 1. By taking all the given inputs such

as; the learning rate, discount factor, maximum number of learn-

ing episodes, the pair of source-sink nodes, and the states topol-

ogy, the algorithm learns and eventually finds the optimum paths

for all nodes based on the three optimization objectives (energy,

congestion and link quality). Additionally, the RL-agents takes in

as input parameter the weighting factor ratios (ω1,ω2,ω3). Based

on the set of the given inputs, the algorithm outputs the most-

rewarding path for all the given src-sink pairs (Line 1).

The proposed Q-routing protocol is executed by following the

steps as defines in Lines 1 to 12. It starts by initializing the Q-

values in Q-table for all states-action with zero (Line 2). Then

starting from an initial state src node (Line 4), the algorithm go

through episodes of learning period to find the most rewarding

actions by using the reward function. This process continues

until the next state St+1 is the final state sink (Line 5-8). Follow-

ing the state transition, the reward is computed according to the

expression (2) followed by updating the Q-value. After that, it

moves to a new state and the episode ends, and a new one starts.

The RL agent uses the final updated result with new Q-values to

compute the most rewarding paths between src-sink nodes.

Information about the paths are retrieved by the domain control-

lers and later installed to the sensor nodes at the data plane.

Algorithm 1: Q-value Update and Action Selection

Input: All (src, sink) pairs, α, γ, ε, Network graph, weighting

factors (ω1, ω2 and ω3), number of episodes n.

1

2

3

4

5

6

7

8

9

10

11

12

For each (src, sink) ∈ within topology do

Initialize Q : A×S → R, initialized with 0

for episode ← 1 to n do

Start in state Sn = src ∈ set of src nodes S;

while Sn+1 ≠ dst do 

Select An for Sn based on expression (6)

Rn+1 ← R(Sn, An) // get the reward and observes new

state Sn+1 using expression (5) to update Q-value.

Sn ← Sn+1 // Move to the next state;

end

end

Using the newly update Q-table find the best path with

state-action pairs that has the maximum Q-value.

end

Store the set of all computed paths

 

Table 1. Weighting factor per group hop-count to the sink node

 Energy Congestion Link Quality Total

Group 1 0.2 0.3 0.5 1.0

Group 2 0.3 0.5 0.2 1.0

Group 3 0.5 0.2 0.3 1.0

Fig. 3. Q-learning routing topology.
https://doi.org/10.6109/jicce.2022.20.1.22 26
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III. PERFORMANCE EVALUATION

A. Simulation Tool

To evaluate the performance of our proposed scheme and

evaluate the effectiveness of RL agent we use the ns3-gym

framework [20] for simplicity and hence avoiding the neces-

sity of prototyping a new RL-based implementation. This

framework is made up of the already existing two compo-

nents: The ns-3 acting as the environment gateway written in

C++ and the OpenAI Gym as the environment proxy written

in python. This new framework operates by turning the ns-3

simulation scenario into an OpenAI Gym compatible envi-

ronment thereby allowing the transfer of states and actions

between the Gym agent and ns-3 simulation environment. To

implement the Q-routing topology in Fig. 3, based on the

hierarchical SDN with an RL agent at the application plane,

we designed an architectural implementation of the SDN

platform in ns3-gym environment as depicted in Fig. 4. To

start, we classify the sensor nodes at the network model into 4

categories: Source, domain controller, normal and sink node

types with each category performing a set of specific tasks.

1) Environment Gateway

To turn create a gym environment we start by extracting

topology information as stored by domain controllers at the

network model. The domain controller store information

about all nodes belonging to its group with their respective

states i.e residual energy, congestion and link quality parameters.

That way, the environment gateway extracts network`s raw

information as stored in domain controllers. We define a

function Update_env() which is executed in a predefined time

in order to check for any updated network status by calling the

GetObservationSpace()function followed by updating the

action space through the GetActionSpace()function. Based on

the collected environment state and updated action space, the

ns3-gym as delivered by the ns3-gym middleware, an agent

returns the action to be executed. We implement the

ExecuteActions() callback to map the ID of the selected next

hop for data routing and collect the reward through the

GetReward() function. Note, the callback functions are

instantiated at the OpenGymGateway object.

2) Environment Proxy

Being wrapped inside the Ns3GymEnv class, the environ-

ment proxy as its name depicts; it inherits the generic Gym

environment and make it accessible through Gym-API by

translating the Gym functions into messages to be sent

towards an environment gateway as the agent is taking obser-

vations and return actions to be executed in the environment.

B. Simulation Settings

First, we illustrate our simulation settings (see. Table 2),

followed by a number of simulation results and discussions

to evaluate the obtained results. We evaluate the perfor-

mance of our proposed scheme (Qprop) by comparing its per-

formance relative to the four other different variants of the

Q-routing, Q-routing with equal weights on all objective

functions Qcomb, Q-routing which prioritize energy consump-

tion (Qen), congestion (Qcon) and selection of link based on

their quality (Qlq). We compare the performance of the five

schemes in conditions with varied number of data flow and

the node density. We compare the performance in regard to

the parameters packet delivery ratio, end-to-end delay, and

network lifetime. To find the best estimate of the simulation

results, we run simulation results on different scenarios each

10 times to obtain the averaged results.

Fig. 4. Implementation of the SDN platform in ns3-gym.

Table 2. Simulation parameters

Parameters Value/ Range

Simulation time (s) 300

Traffic type UDP

Packet size (Bits) 512

Number of nodes 20, 40, 60 and 80

Number of sink node 1

Number of source node 2

Initial energy of sensor nodes 1 J

Deployment of sensor nodes Random in groups

Packet generation rate (pkts/sec) 5

Learning rate α, discount factor γ 0.8, 0.85
27 http://jicce.org
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To discuss the performance of our proposed scheme, we

measure the following parameters: packet delivery ratio,

end-to-end delay, betwork lifetime defined as the time

between network initiation time to the time when the net-

work is completely partitioned and it can no longer accom-

plish any data transfer. 

C. Results Analysis

 This section presents the side-to-side comparison between

our proposed scheme against the other Q-routing variants of

which all agents have the same reward function. We observe

the performances of all schemes under varied conditions as

follows:

1) Varied number of nodes

In this section, we create scenarios with different numbers

of nodes, varying from 20, 40, and 60 nodes. Fig. 5 shows

the average packet ratio for all the routes and the results sug-

gest that, our proposed scheme outperforms the other vari-

ants of the Q-routing scheme regardless of the number of

nodes deployed in the network. The reason being, unlike our

scheme, the other variants of the Q-routing with reward func-

tions which prioritize a single objective for all agents, tend

to subjects the network into congestion as nodes are more

likely to select similar paths for data transmissions. 

Even with the Q-routing version (Qcon) which avoids con-

gested nodes, it is still subjected to selection of relatively

longer routes which eventually leads to increased packet

delivery latency as shown in Fig. 6.

Compared to the other Q-routing schemes, our proposed

scheme exhibits the tendency of increasing delivery latency

in proportional to the number of nodes. This could be

explained by the fact that, as the number of nodes increases

so does the capacity of links fall due to increased signal

noises which eventually affects signal strength of signals

which is an important factor considered in our proposed

scheme. Regardless, our proposed scheme still performs best

by reducing the packet delivery latency by the minimum

average of and 25% and at the most, 51% than that of the

Qen scheme which performed least.

2) Varied Traffic Flow

In this section we present the evaluation of our proposed

scheme in terms of the network lifetime as previously

defined. To do this, we created different scenarios with var-

ied number of source nodes to enforce varied amount of traf-

fic flow. Increasing the traffic flow causes nodes to spend

more energy hence a good way to observe the efficiency of

the discussed schemes in energy consumption. 

As it can be seen from Fig. 7, our proposed scheme exhib-

its relatively better performance compared to the other

schemes. With our proposed scheme, routing task is effi-

ciently shared by many nodes unlike the other schemes

Fig. 5. Packet delivery ratio Vs number of nodes. Fig. 7. Network partition time vs varied number of flows

Fig. 6. End-to-end delay Vs number of nodes
https://doi.org/10.6109/jicce.2022.20.1.22 28
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which tend to select the same nodes multiple times for rout-

ing. By diving routing objectives into groups, distribution

and selection of routes is done multiple time within each

group hence nodes tend to last longer and for that matter,

network partition time is relatively longer than other Q-rout-

ing variants. The Q-variant Qen perfumes well, however it is

still subjected to congestion which eventually leads to

increased energy consumption. Q-routing variant that takes

link quality as its priority (Qlq) has the relatively worst per-

formance since the RSSI factor is related to link distance.

Hence nodes tend to select same nodes that are relatively

closer, a fact which increases the network partition time

exponentially.

IV. CONCLUSION

This paper introduces and discusses a weight adjustment

scheme based on the hop count of Q-routing based on wire-

less sensor networks. Our proposed scheme considers multi-

ple objectives energy, congestion and link quality in selection

of next hops as computed by the RL agent assisted by SDN

architecture. As shown by the simulation graphs, our pro-

posed approach achieves better performance with fair trade-

off among the competing objectives unlike the other dis-

cussed Q-routing variants due to its ability to select routes in

a more distributive manner.

In future work, we plan to evaluate and present a scheme

which considered multiple objectives with adaptive reward

functions with the help of Deep Reinforce Learning (DRL).
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