DOI QR코드

DOI QR Code

산처리에 의한 적양파 분말의 quercetin 배당체와 aglycone의 농도변화

Acid treatment effects on the contents of quercetin glycosides and aglycone in red onion powder

  • 김미령 (신라대학교 바이오식품공학과) ;
  • 임준형 (신라대학교 바이오식품공학과) ;
  • 송지수 (신라대학교 바이오식품공학과)
  • Kim, Mi-Ryung (Department of Food Biotechnology, Silla University) ;
  • Lim, Jun-Hyung (Department of Food Biotechnology, Silla University) ;
  • Song, Ji-Su (Department of Food Biotechnology, Silla University)
  • 투고 : 2021.08.27
  • 심사 : 2022.03.06
  • 발행 : 2022.04.30

초록

열풍건조로 제조된 껍질을 포함한 적양파 분말은 강력한 항산화제인 플라보노이드 함량이 생양파즙에 비해 약 22배로 고농도로 농축되어 있으며, 60-70% ethanol 농도에서 70℃, 2시간 추출시 가장 높은 수율을 나타내었다. 이때 추출된 플라보노이드의 함량은 DPPH radical 소거능과 상관계수 0.877의 높은 상관관계를 나타내었다. 적양파 분말의 플라보이드는 주로 quercetin 배당체인 Q3,4'G, Q4'G와 QA로 이루어져 있으며, 15:39:47의 비율로 구성되어 있었다. 염산, 젖산, 초산 등 다양한 종류의 산처리에 의해 적양파 분말 속 quercetin 배당체는 QA로 전환될 수 있었으며 저농도 초산용액에서 QA로 전환되는 비율이 높았다. 이는 적양파 분말에 포함된 glucosidase가 저농도 산용액에서 활성화되면서 일어나는 반응으로 사료되었다. 초산 처리초기에는 diglycoside인 Q3,4'G의 de-glycosylation이 급격히 일어났으며, 초산처리 6시간 이후에는 Q4'G의 분해와 함께 QA가 증가하여 24시간 경과 후에 최대 QA의 함량에 도달하였으며, QA의 증가는 DPPH radical 소거능과 유의적인 상관성(r=0.90)을 나타내어 생리활성의 증가를 나타내었다. 본 연구결과, 양파의 주요 플라보노이드인 quercetin 배당체는 저농도 초산 처리로 빠르고 간편하게 QA로 전환이 가능하였으며, 이와 더불어 생리활성의 증가도 도모할 수 있었다. 적양파 분말을 이용하여 저농도 산처리를 통하여 QA로의 전환률을 높이면, 고농도의 quercetin을 함유한 양파 소재의 개발이 가능할 것이며, 이를 통해 기능성 양파 가공품의 개발로 이어질 수 있을 것이다.

Flavonoids are bioactive plant metabolites that have a range of beneficial effects on human health. Quercetin 4'-glycoside (Q4'G), quercetin 3,4'-diglycoside (Q3,4'G), and quercetin aglycone (QA) are the main flavonoids found in onions. QA, in particular, is likely to have a greater biological effect than glycosides. To develop an onion extract with high quercetin content, the optimal extraction conditions for red onion powder containing the outer layer of the onion were determined. The effects of acid treatment on the concentration of quercetin glycosides and QA were evaluated. The flavonoids of red onion powder were optimally extracted under 60-70% ethanol at 70℃ for 2 h. The deglycosylation of Q3,4'G and an increase in Q4'G content occurred within 6 h of 0.2% acetic acid treatment. The QA content and deglycosylation of Q4'G eventually peaked at 24 h. In addition, QA content and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity were highly correlated, with a correlation coefficient of 0.90.

키워드

과제정보

본 연구는 2019년 농촌진흥청에서 시행한 농업과학기반기술개발사업(과제번호 PJ014139)의 지원에 의해 수행되었으며, 이에 감사드립니다.

참고문헌

  1. AOAC. Official Method of Analysis of AOAC Intl. 17th ed. Association of Official Analytical Chemists, Washington DC, USA (2003)
  2. Bilyk AD, Cooper PL, Sapers GM. Varietal differences in distribution of quercetin and kaempferol in onion (Allium cepa L.) tissue. J. Agric. Food Chem. 32: 274-276 (1984) https://doi.org/10.1021/jf00122a024
  3. Blois MS. Antioxidant determination by the use of a stable free radical. Nature. 181: 1199-1200 (1958) https://doi.org/10.1038/1811199a0
  4. Bonaccorsi P, Caristi C, Gargiulli C, Leuzzi U. Flavonol glucoside profile of southern Italian red onion (Allium cepa L.). J. Agric. Food Chem. 53(7): 2733-2740 (2005) https://doi.org/10.1021/jf048152r
  5. Carocho M, Ferreira I. A review on antioxidants, prooxidants and related controversy: Natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem. Toxicol. 51: 15-25 (2013) https://doi.org/10.1016/j.fct.2012.09.021
  6. Chaaban H, Ioannou I, Paris C, Charbonnel C, Ghoul M, The photostability of flavanones, flavonols and flavones and evolution of their antioxidant activity. J. Photochem. Photobiol. A: Chem. 336: 131-139 (2017) https://doi.org/10.1016/j.jphotochem.2016.12.027
  7. Cheun KS, Kang SG, Kang SK, Jung ST, Park YK. Changes of the flavonoids in onion vinegar fermented with onion juice and ethanol. Korean J. Food Preserv. 12(6): 650-655 (2005)
  8. Colin-Gonzalez AL, Santana RA, Silva-Islas CA, Chanez-Cardenas ME, Santamaria A, Maldonado PD. The antioxidant mechanisms underlying the aged garlic extract- and S-allylcysteine-induced protection. Oxid. Med. Cell Longev. 2012: 907162 (2012) doi: 10.1155/2012/907162.
  9. Corzo-Martinez M and Villamiel M. An overview on bioactivity of onion. pp.1-48. In: Onion Consumption and Health. Aguirre CB et al. (ed). Nova Science Publishers, Inc., Hauppauge, New York, USA (2012)
  10. D'Andrea G. Quercetin: A flavonol with multifaceted therapeutic applications? Fitoterapia 106: 256-271 (2015) https://doi.org/10.1016/j.fitote.2015.09.018
  11. Goldstein BJ, Mahadev K, Wu X. Redox paradox: insulin action is facilitated by insulin-stimulated reactive oxygen species with multiple potential signaling targets. Diabetes. 54: 311-321 (2005) https://doi.org/10.2337/diabetes.54.2.311
  12. Goudappala P, Sukumar E, Kashinath RT. Effect of diallyl disulphide on glucose utilization in isolated alloxan diabetic liver. Biomed. Res. 29(16): 3207-3212 (2018)
  13. Hakkinen SH, Karenlampi SO, Heinonen IM, Mykkanen HM, Torronen AR. Content of the flavonols quercetin, myricetin, and kaempferol in 25 edible berries. J. Agric Food Chem. 47: 2274-2279 (1999) https://doi.org/10.1021/jf9811065
  14. Hirota S, Shimoda T, Takahama U. Distribution of flavonols and enzymes participating in the metabolism in onion bulbs: mechanism of accumulation of quercetin and its glucosides in the abaxial epidermis. Food Sci. Technol. Res. 5: 384-387 (1990) https://doi.org/10.3136/fstr.5.384
  15. Jang JR, Kwon SJ, Lim SY. Chemical components and biological activities of red onion powder. Korean J. Food cult. 24: 749-755 (2009)
  16. Jeon SY, Baek JH, Jeong EJ, Cha YJ. Optimal extraction conditions of flavonoids from onion peels via response surface methodology. J. Korean Soc. Food Sci. Nutr. 41(5): 695-699 (2012) https://doi.org/10.3746/JKFN.2012.41.5.695
  17. Jeong EJ, Cha YJ. Development of an onion vinegar beverage containing Yuza (Citrus junos Sieb ex Tanaka) and its biological activity. J. Life Sci. 26: 563-570 (2016) https://doi.org/10.5352/JLS.2016.26.5.563
  18. Jin EY, Lim S, Kim S, Park YS, Jang JK, Chung MS, Choi YJ. Optimization of various extraction methods for quercetin from onion skin using response surface methodology. Food Sci. Biotechnol. 20: 1727-1733 (2011) https://doi.org/10.1007/s10068-011-0238-8
  19. Jin EY, Park YS, Jang JK, Chung MS, Park H, Shim KS, Choi YJ. Extraction of quercetin and its glucosides from onion edible part using solvent extraction and various extraction assisting methods. Food Eng. Prog. 13: 147-153 (2009)
  20. Kang SK, Kim YD, Hyun KH, Kim YW, Song BH, Shin SC, Park YK, Development of separating techniques on quercetin-related substances in onion (Allium cepa L.) -1. Contents and stability of quercetin. J. Korean Soc. Food Sci. Nutr. 27(4): 682-686 (1998a)
  21. Kang SK, Kim YD, Hyun KH, Kim YW, Seo JS, Park YK, Development of separating techniques on quercetin-related substances in onion(Allium cepa L.) -2. Optimal extracting condition of quercertin- related substances in onion. J. Korean Soc. Food Sci. Nutr. 27(4): 687-692 (1998b)
  22. Kang NS, Kim JH, Kim JK, Modification of quality characteristics of onion powder by hot-air, vacuum and freeze drying methods. Korean J. Food Preserv. 14: 61-66 (2007)
  23. Kim JA. Quality characteristics of pickled onion and pepper depending on vinegar contents. MS thesis, National University of Science and Technlogy, Seoul, Korea. (2009)
  24. Kim HR, Seog EJ, Lee JH, Rhim JW. Physicochemical properties of onion powder as influenced by drying methods. Korean Soc. Food Sci. Nutr. 36: 342-347 (2007) https://doi.org/10.3746/jkfn.2007.36.3.342
  25. Kulkarni RN, Bruning JC, Winnay JN, Postic C, Magnuson MA, Kahn CR. Tissue-specific knockout of the insulin receptor in pancreatic β cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell 96: 329-339 (1999) https://doi.org/10.1016/S0092-8674(00)80546-2
  26. Landete JM. Updated knowledge about polyphenols: functions, bioavailability, metabolism, and health. Crit. Rev. Food Sci. Nutr. 52: 936-948 (2012) https://doi.org/10.1080/10408398.2010.513779
  27. Lee YG, Cho JY, Kim YM, and Moon JH, Change in flavonoid composition and antioxidative activity during fermentation of onion (Allium cepa L.) by Leuconostoc mesenteroides with different salt concentrations, J. Food Sci. 81: C1385-1393 (2016) https://doi.org/10.1111/1750-3841.13329
  28. Lee ST, Lee YH, Choi YJ, Shon G, Lee H, Heo J. Comparison of quercetin and soluble tannin in Houttuynia cordata THUNB. according to growth stages and plant parts. Korean J. Med. Crop. Sci. 10: 12-16 (2002)
  29. Lee JA, Lee S, Park YS, Optimization of fermentation condition for onion vinegar using Acetobacter orientalis MAK88. Food Eng. Prog. 21: 403-408 (2017) https://doi.org/10.13050/foodengprog.2017.21.4.403
  30. Lee J, Mitchell AE. Quercetin and isorhamnetin glycosides in onion (Allium cepa L.): Varietal comparison, physical distribution, coproduct evaluation, and long-term storage stability. J. Agric. Food Chem. 59: 857-863 (2011) https://doi.org/10.1021/jf1033587
  31. Lombard K, Peffley E, Geoffriau E, Thompson L, Herring A. Quercetin in onion (Allium cepa L.) after heat-treatment simulating home preparation. J. Food Compos. Anal. 18(6): 571-581 (2005) https://doi.org/10.1016/j.jfca.2004.03.027
  32. Moon HI, Ahn KT, Lee KR, Zee OP. Flavonoid compounds and biological activities on the aerial parts of Angelica gigas. Yakhak Hoeji 44: 119-127 (2000)
  33. Moreno MIN, Isla MI, Sampietro AR, Vattuone MA. Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J. Ethnopharmacol. 71: 109-114 (2000) https://doi.org/10.1016/S0378-8741(99)00189-0
  34. Mullen W, Stewart AJ, Lean MEJ, Gardner P, Duthie GG, Crozier A. Effect of freezing and storage on the phenolics, ellagitannins, flavonoids, and antioxidant capacity of red raspberries. J. Agric. Food Chem. 50: 5197-5201 (2002) https://doi.org/10.1021/jf020141f
  35. Park H, Oyunzul G, Suh SW, Park YS, Jang JK, Chung MS, Choi YJ, Shim KS. Investigation of functional ingredients from onion according to the extraction methods, heat treatment, and storage period. Food Eng. Prog. 13: 92-98 (2009)
  36. Tsushida T, Susuki M. Content of flavonol glucosides and some properties of enzymes metabolizing the glucosides in onion (Flavonoid in fruits and vegetables, Part II). Nippon Shokuhin Kagaku Kogaku Kaishi 43: 642-649 (1996) https://doi.org/10.3136/nskkk.43.642
  37. Wang W, Sun C, Mao L, Ma P, Liu F, Yang J, Gao Y. The biological activities, chemical stability, metabolism and delivery systems of quercetin: A review. Trends Food Sci. Technol. 56: 21-38 (2016) https://doi.org/10.1016/j.tifs.2016.07.004
  38. Williamson G, Plumb GW, Uda Y, Price KR, Rhodes MJ. Dietary quercetin glycosides: antioxidant activity and induction of the anticarcinogenic phase II marker enzyme quinone reductase in Hepalclc7 cells. Carcinogenesis 17: 2385-2387 (1996) https://doi.org/10.1093/carcin/17.11.2385
  39. Xiao J. Dietary flavonoid aglycones and their glycosides: Which show better biological significance? Crit. Rev. Food Sci. Nutr. 57: 1874-1905 (2017)
  40. Yang J, Lee H, Sung J, Kim Y, Jeong HS, Lee J. Conversion of rutin to quercetin by acid treatment in relation to biological activities. Prev. Nutr. Food Sci. 24: 313-320 (2019) https://doi.org/10.3746/pnf.2019.24.3.313
  41. Yun YJ, Lee A, Nguyen TMT, Park JT, Yun SM, Kim J. Bioconversion of onion extract to improve the bioavailability of quercetin glycoconjugate. Korean J. Food Sci. Technol. 50: 391-399 (2018) https://doi.org/10.9721/KJFST.2018.50.4.391