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GLOBAL ATTRACTOR FOR A SEMILINEAR

STRONGLY DEGENERATE PARABOLIC EQUATION

WITH EXPONENTIAL NONLINEARITY

IN UNBOUNDED DOMAINS

Nguyen Xuan Tu

Abstract. We study the existence and long-time behavior of weak solu-

tions to a class of strongly degenerate semilinear parabolic equations with

exponential nonlinearities on RN . To overcome some significant difficulty
caused by the lack of compactness of the embeddings, the existence of

a global attractor is proved by combining the tail estimates method and

the asymptotic a priori estimate method.

1. Introduction

In this paper we consider the following semilinear strongly degenerate par-
abolic equation

(1.1)


∂u

∂t
− Pα,βu+ f(X,u) + λu = g(X), X = (x, y, z) ∈ RN , t > 0,

u(X, 0) = u0(X), X ∈ RN ,

where λ > 0,RN = RN1 × RN2 × RN3(N1, N2, N3 ≥ 1), and Pα,β is a strongly
degenerate operator of the form

Pα,βu = ∆xu+ ∆yu+ |x|2α|y|2β∆zu, α, β ≥ 0.

This operator is degenerate on two intersecting surfaces x = 0 and y = 0, and
considered by Thuy and Tri [19]. It turns to be that this operator falls into the
class of ∆λ-Laplace operators [10].

The existence and asymptotic behavior of solutions to semilinear parabolic
equations involving this strongly degenerate operator have been addressed by
a number of authors in the last few years. One way to study the long-time
behavior of solutions is to analyze the existence and properties of a global
attractor for the continuous semigroup generated by solutions. Up to now, there
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are two main kinds of nonlinearities that have been considered in literatures.
The first one is the class of nonlinearities that is locally Lipschitzian continuous
and satisfies a Sobolev growth condition

|f(u)− f(v)| ≤ C(1 + |u|p + |v|p)|u− v|, 0 < p ≤ 4/(Nα,β − 2),

where Nα,β = N1+N2+(α+β+1)N3, and some suitable dissipative conditions.
The second one is the class of nonlinearities that satisfies a polynomial growth

C1|u|p − C0 ≤ f(u)u ≤ C2|u|p + C0, for some p ≥ 2,

f ′(u) ≥ −`.

Under above types of nonlinearities, following closely the approach used in [4],
Thuy and Tri [20] proved the existence of solutions and of a global attractor
for the semigroup generated by problem (1.1) in bounded domains with homo-
geneous Dirichlet boundary conditions. The regularity of the global attractor
obtained in [20] was investigated in [18]. The results in [18, 20] were extended
to the case of unbounded domains in [1, 5], the more delicate case due to the
lack of compactness of Sobolev embeddings. We also refer the interested reader
to [2, 3, 6, 8, 11–15, 21] for some other related results. Note that in these pa-
pers, some restriction on the growth of the nonlinearity is imposed and an
exponential nonlinearity, for example f(u) = eu, does not hold.

In this paper we try to remove this restriction and we were able to prove the
existence of weak solutions and existence of a global attractor for a very large
class of nonlinearities and in the case of unbounded domains. This is the main
novelty of our paper.

To study the problem (1.1) we assume that the initial datum u0 ∈ L2(RN )
is given, the nonlinearity f and the external force g satisfy the following con-
ditions:

(F) f : RN × R→ R is a continuously differentiable function satisfying

(1.2) f ′u(X,u) ≥ −`,

(1.3) f(X,u)u ≥ −µu2 − C1(X),

where ` > 0, 0 < µ < λ, C1(·) ∈ L1(RN ) ∩ L2(RN ) is a nonnegative
function;

(G) g ∈ L2(RN ).

It follows from (1.2) that 0 ≤
∫ u
0

(f ′u(X, s)s+ `s)ds, and therefore by inte-
grating by parts, we obtain

(1.4) F (X,u) ≤ f(X,u)u+ `
u2

2
for all u ∈ R,

where F (X,u) =
∫ u
0
f(X, s)ds is a primitive of f .
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To study the problem (1.1) we use the weighted Sobolev space S1(RN ) de-
fined as the completion of C∞0 (RN ) in the norm

‖u‖2S1(RN ) :=

∫
RN

(|u|2 + |∇xu|2 + |∇yu|2 + |x|2α|y|2β |∇zu|2)dX

=

∫
RN

(|u|2 + |∇α,βu|2)dX,

with ∇α,βu := (∇xu,∇yu, |x|α|y|β∇zu).
This is a Hilbert space with respect to the following scalar product

((u, v))S1(RN ) :=

∫
RN

(uv +∇xu · ∇xv +∇yu · ∇yv + |x|2α|y|2β∇zu · ∇zv)dX.

We also use the space S2(RN ) defined as the completion of C∞0 (RN ) in the
norm

‖u‖2S2(RN ) :=

∫
RN

(|u|2 + |Pα,βu|2)dX.

In a similar way, we also define the spaces S1
0(Ω) and S2(Ω) for a bounded

domain Ω in RN .
The paper is organized as follows. In Section 2, we prove the existence and

uniqueness of global weak solutions to the problem (1.1). In Section 3, we show
the existence of global attractors in various function spaces for the associated
continuous semigroup by exploiting and combining the tail estimates method
and the asymptotic a priori estimate method.

2. Existence and uniqueness of weak solutions

Definition. A function u is called a weak solution of the problem (1.1) on the
interval (0, T ) if u ∈ C([0, T ];L2(RN )) ∩ L2(0, T ;S1(RN )), u(0) = u0, and

〈ut, w〉 − 〈Pα,βu,w〉+ 〈f(X,u), w〉+ λ〈u,w〉 = 〈g, w〉

for all test functions w ∈ S1(RN ) ∩ L∞(RN ) and for a.e. t ∈ (0, T ).

Theorem 2.1. Assume (F) and (G) hold. Then for any u0 ∈ L2(RN ) and
T > 0 given, the problem (1.1) has a unique weak solution u on the interval
(0, T ). Moreover, the mapping u0 7→ u(t) is continuous on L2(RN ).

Proof. (i) Existence. We consider a sequence of problems in bounded domains

(2.1)


∂u

∂t
− Pα,βu+ f(X,u) + λu = g(X), X = (x, y, z) ∈ BR, t > 0,

u(X, t) = 0, X ∈ ∂BR, t > 0,

u(X, 0) = u0,R(X), X ∈ BR,
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where BR is the open ball of radius R ≥ 1 centered at 0, u0,R = u0ψR(|X|)
and ψR is a smooth function such that

ψR(r) =


1 if 0 ≤ r ≤ R− 1,

0 ≤ ψR(r) ≤ 1 if R− 1 ≤ r ≤ R,
0 if r > R.

It was proved in [16] that for each R ≥ 1, the problem (2.1) has a unique
weak solution uR. We will show that {uR} is uniformly bounded by a constant
independent of R. We have

1

2

d

dt
‖uR‖2L2(BR) +

∫
BR

|∇α,βuR|2dX +

∫
BR

f(X,uR)uRdX + λ‖uR‖2L2(BR)

=

∫
BR

guRdX.

By (1.3), we have

1

2

d

dt
‖uR‖2L2(BR) +

∫
BR

|∇α,βuR|2dX + (λ− µ)‖uR‖2L2(BR)

≤
∫
BR

guRdX +

∫
BR

C1(X)dX.

Using the Cauchy inequality and the assumption C1(·) ∈ L1(RN ), we get

1

2

d

dt
‖uR‖2L2(BR) +

∫
BR

|∇α,βuR|2dX + (λ− µ)‖uR‖2L2(BR)

≤ 1

2(λ− µ)
‖g‖L2(BR) +

λ− µ
2
‖uR‖2L2(BR) + C.

Therefore,

d

dt
‖uR‖2L2(BR) + 2

∫
BR

|∇α,βuR|2dX + (λ− µ)‖uR‖2L2(BR)

≤ 1

λ− µ
‖g‖L2(RN ) + C.

Integrating from 0 to t, 0 ≤ t ≤ T, we get

‖uR(t)‖2L2(BR) + 2

∫ t

0

∫
BR

|∇α,βuR|2dXds

+ (λ− µ)

∫ t

0

‖uR(s)‖2L2(BR)ds

≤ 1

λ− µ
‖g(X)‖L2(RN )T + CT + ‖u0ψR(|X|)‖2L2(BR).(2.2)

Let urj , rj → +∞, be a sequence of solutions to the problem (2.1) in Brj .
Then, by (2.2) it follows that

(2.3) {urj} is uniformly bounded in L∞(0, T ;L2(Brj )) ∩ L2(0, T ;S1(Brj )).
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We extend these solutions to be defined on RN in the following way

ûrj (X) =

{
urj (X)ψrj (|X|) in Brj ,

0 otherwise.

By (2.3), {ûrj} is a bounded sequence in

L∞(0, T ;L2(RN )) ∩ L2(0, T ;S1(RN )).

Hence, there exists a subsequence of {ûrj} (denoted again by ûrj ) such that

ûrj ⇀ u∞ in L2(0, T ;S1(RN )),

ûrj
∗
⇀u∞ in L∞(0, T ;L2(RN )),(2.4)

Pα,β ûrj ⇀ Pα,βu∞ in L2(0, T ;S−1(RN )).

We will prove that u∞ is a weak solution of the problem (1.1).
Let rk be fixed. Since rj → +∞, we can assume rk ≤ rj − 1. We define

the projections in Brk of ûrj and denote them by ukj = Lkûrj . It is clear

from (2.3) that {ukj} is bounded in L∞(0, T ;L2(Brk)) ∩ L2(0, T ;S1(Brk)).
It follows that there exists a subsequence (denoted again by ukj) such that
ukj = Lkûrj ⇀ uk∞ in L2(0, T ;S1(Brk)) and weakly-∗ in L∞(0, T ;L2(Brk)).
We now check that Lku∞ = uk∞. Indeed, letting v ∈ C∞0 ([0, T ] × Brk), the
weak-∗ convergence in L∞(0, T ;L2(Brk)) gives∫ T

0

∫
Brk

LkûrjvdXdt→
∫ T

0

∫
Brk

uk∞vdXdt.

On the other hand, noting that v(t,X) = 0 if X 6∈ Brk and using (2.4) we have∫ T

0

∫
Brk

LkûrjvdXdt→
∫ T

0

∫
Brk

ûrjvdXdt→
∫ T

0

∫
Brk

u∞vdXdt,

and ∫ T

0

∫
Brk

u∞vdXdt =

∫ T

0

∫
Brk

Lku∞vdXdt,

so that Lku∞ = uk∞. We claim that Lku∞ is a weak solution in Qrk,T =
[0, T ]×Brk . We have

(2.5)

1

2

d

dt
‖ukj‖2L2(Brk

) +

∫
Brk

|∇α,βukj |2dX +

∫
Brk

f(X,ukj)ukjdX

+ λ‖ukj‖2L2(Brk
) =

∫
Brk

gukjdX.

Integrating (2.5) from 0 to T , we have

2

∫ T

0

∫
Brk

|∇α,βukj |2dXdt+2

∫
Qrk,T

f(X,ukj)ukjdXdt+λ

∫ T

0

‖ukj‖2L2(Brk
)dt

≤ ‖u0,rk‖2L2(Brk
) +

1

λ
‖g‖2L2(Brk

)T.



428 N. X. TU

Hence ∫
Qrk,T

f(X,ukj)ukjdXdt ≤ C.

We now prove that {f(X,ukj)} is bounded in L1(Qrk,T ). Putting h(ukj) =
f(X,ukj) + µ̄ukj , where µ̄ > `. Note that h(s)s ≥ 0 for all s ∈ R, we have∫

Qrk,T

|h(ukj)|dXdt ≤
∫
Qrk,T∩{|ukj |>1}

|h(ukj)ukj |dXdt

+

∫
Qrk,T∩{|ukj |≤1}

|h(ukj)|dXdt

≤
∫
Qrk,T

h(ukj)ukjdXdt+ sup
|s|≤1

|h(s)||Qrk,T | ≤ C.

Hence it implies that {h(ukj)}, and therefore {f(X,ukj)} is bounded in
L1(Qrk,T ). Since

∂ukj
∂t

= Pα,βukj − f(X,ukj)− λukj + g,

we deduce that {∂ukj

∂t } is bounded in L2(0, T ;S−1(Bkj)) + L1(Qrk,T ), and

therefore in L1(0, T ;S−1(Bkj) + L1(Bkj)). Because S1
0(Bkj) ⊂⊂ L2(Bkj) ⊂

S−1(Bkj) + L1(Bkj), by the Aubin-Lions-Simon compactness lemma (see e.g.
[7], Theorem II.5.16, p. 102), we have that {ukj} is compact in L2(0, T ;L2(Bkj)).
Hence we may assume, up to a subsequence, that we have ukj → uk∞ a.e. in
Qrk,T and then,∫

Qrk,T

f(X,ukj)ξdXdt→
∫
Qrk,T

f(X,uk∞)ξdXdt

for all ξ ∈ C∞0 ([0, T ];S−1(Bkj) ∩ L∞(Bkj)). Hence, we obtain that uk∞ is a
weak solution in [0, T ]× Brk . Hence we get that u∞ is a weak solution of the
problem (1.1). Indeed, for any test function v ∈ C∞0 (RN), there exists rk such
that v ∈ C∞0 (Brk). Using uk∞ solving (1.1) in Qrk,T , we can conclude that u∞
is a weak solution of (1.1) in [0, T ]× RN .

(ii) Uniqueness and continuous dependence on the initial data. Let u and v
be two weak solutions of (1.1) with initial data u0, v0 ∈ L2(RN ), respectively.
Putting w = u− v, we have

(2.6)


∂w

∂t
− Pα,βw + f̃(X,u)− f̃(X, v)− `w + λw = 0,

w(0) = u0 − v0,

where f̃(X, s) = f(X, s) + `s. Here, because w(t) does not belong to W :=
S1(RN ) ∩ L∞(RN ), we cannot choose w(t) as a test function as in [4]. Conse-
quently, the proof will be more involved.
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We use some ideas in [9]. Let Bk : R→ R be the truncated function

Bk(s) =


k if s > k,

s if |s| ≤ k,
−k if s < −k.

Consider the corresponding Nemytskii mapping B̂k : W →W defined as follows

B̂k(w)(x) = Bk(w(x)) for all x ∈ RN .

By Lemma 2.3 in [9], we have that ‖B̂k(w) − w‖W → 0 as k → ∞. Now

multiplying the first equation in (2.6) by B̂k(w), then integrating over RN ×
(ε, t), where t ∈ (0, T ), we get∫ t

ε

∫
RN

d

ds

(
w(s)B̂k(w)(s)

)
dxds−

∫ t

ε

∫
RN

w
d

ds

(
B̂k(w)(s)

)
dxds

+
1

2

∫ t

ε

∫
{x∈RN :|w(x,s)|≤k}

|∇α,βw|2dxds

+

∫ t

ε

∫
RN

(
f̃(X,u)− f̃(X, v)

)
B̂k(w)dxds

− `
∫ t

ε

∫
RN

wB̂k(w)dxds+ λ

∫ t

ε

∫
RN

wB̂k(w)dxds = 0.

Nothing that w d
dt (B̂k(w)) = 1

2
d
dt (B̂k(w))2, we have∫

RN

w(t)B̂k(w)(t)dx− 1

2
‖B̂k(w)(t)‖2L2(RN )

+
1

2

∫ t

ε

∫
{x∈RN :|w(x,s)|≤k}

|∇α,βw|2dxds+

∫ t

ε

∫
RN

f̃ ′(X, ξ)wB̂k(w)dxds

=

∫
RN

w(ε)B̂k(w)(ε)dx− 1

2
‖B̂k(w)(ε)‖2L2(RN ) + (`− λ)

∫ t

ε

∫
RN

wB̂k(w)dxds.

Note that f̃ ′(X, s) ≥ 0 and sBk(s) ≥ 0 for all s ∈ R, by letting ε → 0 and
k →∞ in the above equality, we obtain

‖w(t)‖2L2(RN ) ≤ ‖w(0)‖2L2(RN ) + (2`− λ)

∫ t

0

‖w(s)‖2L2(RN )ds.

Hence, by the Gronwall inequality of integral form, we get

‖w(t)‖2L2(RN ) ≤ ‖w(0)‖2L2(RN )e
(2`−λ)t

≤ ‖w(0)‖2L2(RN )e
(2`−λ)T for all t ∈ [0, T ].

Hence, we get the continuous dependence on the initial data of the solutions,
and in particular, the uniqueness when u0 = v0. �
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3. Existence of global attractors

By Theorem 2.1, we can define a continuous semigroup S(t) : L2(RN ) →
L2(RN ) associated to the problem (1.1) as follows

S(t)u0 := u(t),

where u(·) is the unique global weak solution of (1.1) with the initial datum u0.
We will prove that the semigroup S(t) has a global attractor A in the spaces
L2(RN ) and S1(RN ).

3.1. Existence of bounded absorbing sets

For brevity, in the following lemmas, we give some formal calculation. The
rigorous proof is done by use of Galerkin approximations and Lemma 11.2 in
[17].

Lemma 3.1. The semigroup {S(t)}t≥0 has a bounded absorbing set in L2(RN ).

Proof. Multiplying the first equation in (1.1) by u, we have

(3.1)

1

2

d

dt
‖u‖2L2(RN ) +

∫
RN

|∇α,βu|2dX +

∫
RN

f(X,u)udX + λ‖u‖2L2(RN )

=

∫
RN

gudX.

By (1.3), we have

(3.2)

d

dt
‖u‖2L2(RN ) + 2

∫
RN

|∇α,βu|2dX + 2(λ− µ)‖u‖2L2(RN )

≤ 2

∫
RN

gudX + C ≤ (λ− µ)‖u‖2L2(RN ) +
1

λ− µ
‖g‖2L2(RN ) + C.

Thus, we have

d

dt
‖u‖2L2(RN ) + (λ− µ)‖u‖2L2(RN ) ≤

1

λ− µ
‖g‖2L2(RN ) + C.

Hence, thanks to the Gronwall inequality, we obtain

‖u(t)‖2L2(RN ) ≤ ‖u(0)‖2L2(RN )e
−(λ−µ)t +R1,

where R1 = R1(λ, µ,C, ‖g‖2L2(RN )). Hence, if choosing ρ1 = 2R1, we have

(3.3) ‖u(t)‖2L2(RN ) ≤ ρ1 for all t ≥ T1 = T (B).

This completes the proof. �

Lemma 3.2. The semigroup {S(t)}t≥0 has a bounded absorbing set in S1(RN ).

Proof. By (3.2), we have

d

dt
‖u‖2L2(RN ) + 2

∫
RN

|∇α,βu|2dX ≤
1

λ− µ
‖g‖2L2(RN ) + C.
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Integrating on (t, t+ 1) and by Lemma 3.1, we have

(3.4)

∫ t+1

t

‖∇α,βu(s)‖2L2(RN )ds ≤ ρ2 = ρ2(C, ρ1, ‖g‖2L2(RN )) for all t ≥ T1.

Multiplying (1.1) by −Pα,βu and integrating over RN , we obtain

1

2

d

dt
‖∇α,βu‖2L2(RN ) + ‖Pα,βu‖2L2(RN )

= −
∫
RN

f ′(X,u)|∇α,βu|2dX − λ
∫
RN

|∇α,βu|2dX −
∫
RN

gPα,βudX

≤ `

∫
RN

|∇α,βu|2dX − λ
∫
RN

|∇α,βu|2dX +
1

2
‖Pα,βu‖2L2(RN ) +

1

2
‖g‖2L2(RN ).

Hence, we have

d

dt
‖∇α,βu‖2L2(RN ) ≤ 4`‖∇α,βu‖2L2(RN ) + ‖g‖2L2(RN ).(3.5)

Combining (3.4)-(3.5) and using the uniform Gronwall inequality, we have

‖∇α,βu(t)‖2L2(RN ) ≤ ρ2 for all t ≥ T2 = T1 + 1.(3.6)

By (3.3) and (3.6), we finish the proof. �

Lemma 3.3. Suppose (F) and (G) hold. Then for every bounded subset B in
L2(RN ), there exists a constant T = T (B) > 0 such that

‖ut(s)‖2L2(RN ) ≤ ρ3 for all u0 ∈ B, and s ≥ T,

where ut(s) = d
dt (S(t)u0)|t=s and ρ3 is a positive constant independent of B.

Proof. By differentiating (1.1) in time, we get

utt − Pα,βut + f ′u(X,u)ut + λut = 0.

Taking the inner product of this equality with ut in L2(RN ) and using (1.2),
in particular, we obtain

1

2

d

dt
‖ut‖2L2(RN ) ≤ C‖ut‖

2
L2(RN ).(3.7)

Multiplying the first equation in (1.1) by ut, we obtain

(3.8)

d

dt

(
1

2
‖∇α,βu‖2L2(RN ) +

λ

2
‖u‖2L2(RN ) +

∫
RN

F (X,u)dX −
∫
RN

gudX

)
=− ‖ut‖2L2(RN ) ≤ 0.

On the other hand, integrating (3.1) from t to t+ 1 and using (3.3), we have∫ t+1

t

[
‖∇α,βu‖2L2(RN ) + λ‖u‖2L2(RN ) +

∫
RN

f(X,u)udX −
∫
RN

gudX

]
ds

≤ ‖u(t)‖2L2(RN ) ≤ ρ1 for all t ≥ T1.
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Using the inequality (1.4), we deduce that∫ t+1

t

[
‖∇α,βu‖2L2(RN ) + λ‖u‖2L2(RN ) +

∫
RN

f(X,u)udX −
∫
RN

gudX

]
ds

≥
∫ t+1

t

[
‖∇α,βu‖2L2(RN ) + λ‖u‖2L2(RN ) +

∫
RN

F (X,u)dX

− `

2
‖u‖2L2(RN ) −

∫
RN

gudX

]
ds

≥
∫ t+1

t

[
1

2
‖∇α,βu‖2L2(RN ) +

λ

2
‖u‖2L2(RN ) +

∫
RN

F (X,u)dX

−
∫
RN

gudX

]
ds− `

2
ρ1 for all t ≥ T1,

where we have used the inequality (3.3). Hence,

(3.9)

∫ t+1

t

[
1

2
‖∇α,βu‖2L2(RN ) +

λ

2
‖u‖2L2(RN ) +

∫
RN

F (X,u)dX

−
∫
RN

gudX

]
ds ≤ (1 +

`

2
)ρ1 for all t ≥ T1.

By the uniform Gronwall inequality, from (3.8) and (3.9), we deduce that

1

2
‖∇α,βu‖2L2(RN ) +

λ

2
‖u‖2L2(RN ) +

∫
RN

F (X,u)dX −
∫
RN

gudX ≤ ρ3(3.10)

for all t ≥ T2 = T1 + 1. Integrating (3.8) from t to t + 1 and using (3.10), we
obtain ∫ t+1

t

‖ut(s)‖2L2(RN )ds ≤ ρ3 for all t ≥ T2.(3.11)

Combining (3.7) with (3.11) and using the uniform Gronwall inequality, we
have

‖ut(s)‖2L2(RN ) ≤ ρ3 for all s ≥ T3 = T2 + 1.

This completes the proof. �

We now show the existence of a bounded absorbing set in S2(RN ).

Lemma 3.4. The semigroup {S(t)}t≥0 has a bounded absorbing set in S2(RN ),
i.e., there exists a constant ρ4 > 0 such that for any bounded subset B ⊂
L2(RN ), there is a TB > 0 such that

‖Pα,βu(t)‖2L2(RN ) + ‖u(t)‖2L2(RN ) ≤ ρ4 for any t ≥ TB , u0 ∈ B.

Proof. Taking the L2-inner product of (1.1) with −Pα,βu+ λu, we have

‖Pα,βu(t)‖2L2(RN ) + λ2‖u(t)‖2L2(RN ) + λ

∫
RN

f(X,u)udX
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≤ 2λ

∫
RN

uPα,βudX −
∫
RN

ut(−Pα,βu+ λu)dX +

∫
RN

f(X,u)Pα,βudX

+

∫
RN

g(−Pα,βu+ λu)dX.

Using (1.3) and integrating by parts the third term on the right-hand side, we
have

‖Pα,βu(t)‖2L2(RN ) + λ2‖u(t)‖2L2(RN ) − λµ‖u(t)‖2L2(RN )

≤ 2λ

∫
RN

uPα,βudX −
∫
RN

ut(−Pα,βu+ λu)dX

−
∫
RN

f ′u(X,u)
(
|∇xu|2 + |∇yu|2 + |x|2α|y|2β |∇zu|2

)
dX

+

∫
RN

g(−Pα,βu+ λu)dX + λ

∫
RN

C1(X)dX.

By the Cauchy inequality and assumption (1.2), we have

‖Pα,βu(t)‖2L2(RN )+‖u(t)‖2L2(RN ) ≤ C(1+‖ut‖2L2(RN )+‖u‖
2
S1(RN )+‖g‖

2
L2(RN )).

By Lemmas 3.1-3.3, there exists ρ4 > 0 such that

‖Pα,βu(t)‖2L2(RN ) + ‖u(t)‖2L2(RN ) ≤ ρ4
for all t large enough. This completes the proof. �

Next, to prove the existence of a global attractor in L2(RN ) and S1(RN ).
We will consider three functions ϕR, θR, γR such that

ϕR = ϕ(
|x|2

R2
), θR = θ(

|y|2

R2
), γR = γ(

|z|2

R2(1+α+β)
)

with ϕ, θ, γ ∈ C∞[0,+∞),

0 ≤ ϕ, θ, γ ≤ 1, ϕ, θ, γ = 0 in [0,
1

2
], ϕ, θ, γ = 1 in [1,+∞).

Then there exists a constant C > 0 such that |ϕ′(·)|, |θ′(·)|, |γ′(·)| ≤ C.
Moreover, letting

B∗R = BRN1 (0, R)×BRN2 (0, R)×BRN3 (0, R1+α+β)

and

ΣR = RN\
(
BRN1 (0, R/2)×BRN2 (0, R/2)×BRN3 (0, R1+α+β/2)

)
.

3.2. Existence of a global attractor in L2(RN)

Lemma 3.5. Suppose (F) and (G) hold. Then for any ε > 0 and any bounded
subset B ⊂ L2(RN ), there exist T = T (ε, B) > 0 and K = K(ε, B) > 0 such
that for all t ≥ T and R ≥ K,∫

RN\B∗
R

|u(X, t)|2dX ≤ ε.
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Proof. Taking the inner product of (1.1) with (ϕRθRγR)u in L2(RN ), we get

1

2

d

dt

∫
RN

(ϕRθRγR)|u|2dX −
∫
RN

(ϕRθRγR)uPα,βudX

+ λ

∫
RN

(ϕRθRγR)|u|2dX +

∫
RN

(ϕRθRγR)f(X,u)udX=

∫
RN

(ϕRθRγR)ugdX.

Using (1.2) and (1.3), we have

(3.12)

1

2

d

dt

∫
RN

(ϕRθRγR)|u|2dX + (λ− µ)

∫
RN

(ϕRθRγR)|u|2dX

≤
∫
RN

(ϕRθRγR)uPα,βudX +

∫
∑

R

|C1(X)|dX +

∫
RN

(ϕRθRγR)ugdX.

On the other hand, we have

(3.13)

∫
RN

(ϕRθRγR)uPα,βudX ≤
1

2

∫
RN

(|u|2 + |Pα,βu|2)dX,

and∫
RN

(ϕRθRγR)ugdX =

∫
∑

R

(ϕRθRγR)ugdX

≤ λ− µ
2

∫
RN

(ϕRθRγR)|u|2dX +
1

2(λ− µ)

∫
∑

R

|g|2dX.(3.14)

It follows from (3.12)-(3.14) that

(3.15)

d

dt

∫
RN

(ϕRθRγR)|u|2dX + (λ− µ)

∫
RN

(ϕRθRγR)|u|2dX

≤ 2

∫
∑

R

|C1(X)|dX +
1

λ− µ

∫
∑

R

|g|2dX +

∫
RN

(|u|2 + |Pα,βu|2)dX.

Multiplying (3.15) by e(λ−µ)t and then integrating over (T, t), we obtain∫
RN

(ϕRθRγR)|u|2dX

≤ e−(λ−µ)t
∫
RN

(ϕRθRγR)|u(T )|2dX

+ 2e−(λ−µ)t
∫ t

T

e(λ−µ)ξ
∫
∑

R

|C1(X)|dXdξ

+
1

λ− µ
e−(λ−µ)t

∫ t

T

e(λ−µ)ξ
∫
∑

R

|g|2dXdξ

+ e−(λ−µ)t
∫ t

T

e(λ−µ)ξ
∫
RN

(|u|2 + |Pα,βu|2)dXdξ

≤ e−(λ−µ)t‖u(T )‖2L2(RN ) +
2

λ− µ

∫
∑

R

|C1(X)|dX
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+
1

(λ− µ)2

∫
∑

R

|g|2dX

+ e−(λ−µ)t
∫ t

T

e(λ−µ)ξ
∫
RN

(|u|2 + |Pα,βu|2)dXdξ.(3.16)

Noting that for given ε > 0, there is T1 = T1(ε) > 0 such that for all t ≥ T1,

(3.17) e−(λ−µ)t‖u(T1)‖2L2(RN ) ≤
ε

4
.

Since C1(·) ∈ L1(RN ), there exists K1 = K1(ε) > 0 such that for all R ≥ K1,

(3.18)
2

λ− µ

∫
∑

R

|C1(X)|dX ≤ ε

4
.

On the other hand, since g ∈ L2(RN ), there is K2 = K2(ε) > K1 such that for
all R ≥ K2,

(3.19)
1

(λ− µ)2

∫
∑

R

|g|2dX ≤ ε

4
.

For the last term on the right-hand side of (3.16), it follows from Lemma 3.4
that there is T2 > 0 such that for all ξ ≥ T2,

(3.20)

∫
RN

(|u(X, ξ)|2 + |Pα,βu(X, ξ)|2)dX ≤ ρ4.

Therefore, there is K3 = K3(ε) > K2 such that for all R ≥ K3 and t ≥ T2,

(3.21) e−(λ−µ)t
∫ t

T2

e(λ−µ)ξ(

∫
RN

(|u|2 + |Pα,βu|2)dX)dξ ≤ ε

4
.

Let T = max{T1, T2}, then by (3.16)-(3.21) we find that for all R ≥ K ≥ K3

and t ≥ T , ∫
RN

(ϕRθRγR)|u(X, t)|2dX ≤ ε,

and hence for all R ≥ K and t ≥ T ,∫
RN\B∗

R

|u(X, t)|2dX ≤
∫
RN

(ϕRθRγR)|u(X, t)|2dX ≤ ε,

which completes the proof. �

Now, we show the asymptotic compactness of S(t) in L2(RN ).

Lemma 3.6. Suppose that (F) and (G) hold. Then S(t) is asymptotically
compact in L2(RN ), that is, for any bounded sequence {xn} ⊂ L2(RN ) and any
sequence tn ≥ 0, tn →∞, {S(tn)xn} has a convergent subsequence with respect
to the topology of L2(RN ).
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Proof. We use the uniform estimate on the tails of solutions to establish the
precompactness of {un(tn)} := {S(tn)xn}, that is, we prove that for every
ε > 0, the sequence {un(tn)} has a finite covering of balls of radii less than ε.

Given K > 0, denote

B∗K = BRN1 (0,K)×BRN2 (0,K)×BRN3 (0,K1+α+β) and BcK = RN\B∗K .

Then, by Lemma 3.5, for the given ε > 0, there exist K = K(ε) > 0 and
T = T (ε) > 0 such that for t ≥ T ,

‖un(t)‖L2(Bc
K) ≤ ε.

Since tn → ∞, there is N1 = N1(ε) > 0 such that tn ≥ T for all n ≥ N1 and
hence we obtain that, for all n ≥ N1,

(3.22) ‖un(tn)‖L2(Bc
K) ≤ ε.

By Lemma 3.2, there exist C > 0 and N2 > 0 such that for all n ≥ N2,

‖un(tn)‖S1(B∗
K) ≤ C.

Since compactness of the embedding S1(B∗K) ↪→ L2(B∗K) (see [19]), the se-
quence {un(tn)} is precompact in L2(B∗K). Therefore, for the given ε > 0,
{un(tn)} has a finite covering in L2(B∗K) of balls of radii less than ε, which
along with (3.22) shows that {un(tn)} has a finite covering in L2(RN ) of balls
of radii less than ε, and thus {un(tn)} is precompact in L2(RN ). �

We are now ready to prove the existence of a global attractor in L2(RN ).

Theorem 3.7. Suppose that (F) and (G) hold. Then the semigroup S(t) gen-
erated by the problem (1.1) has a global attractor AL2 in L2(RN ).

Proof. Denote

B =
{
u : ‖u‖L2(RN ) ≤ ρ1

}
,

where ρ1 is the positive constant in the proof of Lemma 3.1. Then B is a
bounded absorbing set for S(t) in L2(RN ). In addition, S(t) is asymptotically
compact in L2(RN ) since Lemma 3.6. Thus, we get the conclusion. �

3.3. Existence of a global attractor in S1(RN)

Lemma 3.8. Suppose that (F) and (G) hold. Then for any ε > 0 and any
bounded subset B ⊂ L2(RN ), there exist T = T (ε, B) > 0 and K = K(ε, B) > 0
such that for all t ≥ T and R ≥ K,∫

RN\B∗
R

|∇α,βu|2dX ≤ ε.

Proof. Taking the inner product of (1.1) with −(ϕRθRγR)Pα,βu in L2(RN ), we
get

−
∫
RN

ut(ϕRθRγR)Pα,βudX +

∫
RN

(ϕRθRγR)|Pα,βu|2dX
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− λ
∫
RN

(ϕRθRγR)uPα,βudX −
∫
RN

(ϕRθRγR)f(X,u)Pα,βudX

= −
∫
RN

(ϕRθRγR)Pα,βugdX.

On the other hand, we have

−
∫
RN

ut(ϕRθRγR)Pα,βudX

=

∫
RN

(ϕRθRγR)

(
∇α,βut,∇α,βu

)
RN

dX

+

∫
RN

ut

(
∇α,β(ϕRθRγR),∇α,βu

)
RN

dX

=
1

2

d

dt

∫
RN

(ϕRθRγR)|∇α,βu|2dX +

∫
RN

ut

(
∇α,β(ϕRθRγR),∇α,βu

)
RN

dX;

− λ
∫
RN

(ϕRθRγR)uPα,βudX

= λ

∫
RN

(ϕRθRγR)|∇α,βu|2dX + λ

∫
RN

u

(
∇α,β(ϕRθRγR),∇α,βu

)
RN

dX;

−
∫
RN

(ϕRθRγR)f(X,u)Pα,βudX

=

∫
RN

(ϕRθRγR)f ′u(X,u)|∇α,βu|2dX

+

∫
RN

f(X,u)

(
∇α,β(ϕRθRγR),∇α,βu

)
RN

dX;

−
∫
RN

(ϕRθRγR)Pα,βugdX = −
∫
∑

R

(ϕRθRγR)Pα,βugdX

≤
∫
∑

R

(ϕRθRγR)|Pα,βu|2dX +
1

4

∫
∑

R

|g|2dX.

Hence, we obtain

1

2

d

dt

∫
RN

(ϕRθRγR)|∇α,βu|2dX +

∫
RN

(ϕRθRγR)|Pα,βu|2dX

+ λ

∫
RN

(ϕRθRγR)|∇α,βu|2dX

≤ −
∫
RN

ut

(
∇α,β(ϕRθRγR),∇α,βu

)
RN

dX

− λ
∫
RN

u

(
∇α,β(ϕRθRγR),∇α,βu

)
RN

dX
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+ `

∫
RN

(ϕRθRγR)|∇α,βu|2dX

−
∫
RN

f(X,u)

(
∇α,β(ϕRθRγR),∇α,βu

)
RN

dX

+

∫
∑

R

(ϕRθRγR)|Pα,βu|2dX +
1

4

∫
∑

R

|g|2dX.(3.23)

Because ϕ′(s), θ′(s), γ′(s) = 0 for all 0 ≤ s < 1
2 and s > 1, we have∣∣∣∣− ∫

RN

ut

(
∇α,β(ϕRθRγR),∇α,βu

)
RN

dX

∣∣∣∣
≤
∣∣∣∣ ∫

RN

utθRγR

(
∇xu,∇xϕR

)
RN

dX

∣∣∣∣+

∣∣∣∣ ∫
RN

utϕRγR

(
∇yu,∇yθR

)
RN

dX

∣∣∣∣
+

∣∣∣∣ ∫
RN

utϕRθR|x|2α||y|2β
(
∇zu,∇zγR

)
RN

dX

∣∣∣∣
≤ 2

R2

∣∣∣∣ ∫
RN

utθRγRϕ
′(
|x|2

R2
)(x · ∇xu)dX

∣∣∣∣
+

2

R2

∣∣∣∣ ∫
RN

utϕRγRθ
′(
|y|2

R2
)(y · ∇yu)dX

∣∣∣∣
+

2

R2(1+α+β)

∣∣∣∣ ∫
RN

utϕRθRγ
′(

|z|2

R2(1+α+β)
)|x|2α|y|2β(z · ∇zu)dX

∣∣∣∣
≤ 2

R2

∣∣∣∣ ∫
B∗

R

utθRγRϕ
′(
|x|2

R2
)(x · ∇xu)dX

∣∣∣∣
+

2

R2

∣∣∣∣ ∫
B∗

R

utϕRγRθ
′(
|y|2

R2
)(y · ∇yu)dX

∣∣∣∣
+

2

R2(1+α+β)

∣∣∣∣ ∫
B∗

R

utϕRθRγ
′(

|z|2

R2(1+α+β)
)|x|2α|y|2β(z · ∇zu)dX

∣∣∣∣
≤ 2C

R2

(∫
B∗

R

|ut|2dX
)1/2(∫

B∗
R

|x|2|∇xu|2dX
)1/2

+
2C

R2

(∫
B∗

R

|ut|2dX
)1/2(∫

B∗
R

|y|2|∇yu|2dX
)1/2

+
2C

R2(1+α+β)

(∫
B∗

R

|ut|2dX
)1/2(∫

B∗
R

|x|4α|y|4β |z|2|∇zu|2dX
)1/2

≤ 2C

R

(∫
B∗

R

|ut|2dX
)1/2(∫

B∗
R

|∇xu|2dX
)1/2

+
2C

R

(∫
B∗

R

|ut|2dX
)1/2(∫

B∗
R

|∇yu|2dX
)1/2
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+
2C

R

(∫
B∗

R

|ut|2dX
)1/2(∫

B∗
R

|x|2α|y|2β∇zu|2dX
)1/2

≤ 2C

R

[
1

2
‖ut‖2L2(B∗

R) +
1

2

∫
B∗

R

|∇xu|2dX
]

+
2C

R

[
1

2
‖ut‖2L2(B∗

R) +
1

2

∫
B∗

R

|∇yu|2dX
]

+
2C

R

[
1

2
‖ut‖2L2(B∗

R) +
1

2

∫
B∗

R

|x|2α|y|2β |∇zu|2dX
]

≤ 3C

R
‖ut‖2L2(B∗

R) +
C

R

∫
B∗

R

|∇α,βu|2dX.

Hence ∣∣∣∣− ∫
RN

ut

(
∇α,β(ϕRθRγR),∇α,βu

)
RN

dX

∣∣∣∣
≤ 3C

R
‖ut‖2L2(RN ) +

C

R

∫
RN

|∇α,βu|2dX.(3.24)

Analogously to (3.24), we have∣∣∣∣− λ ∫
RN

u

(
∇α,β(ϕRθRγR),∇α,βu

)
RN

dX

∣∣∣∣
≤ 3λC

R
‖u‖2L2(RN ) +

λC

R

∫
RN

|∇α,βu|2dX,(3.25)

and ∣∣∣∣− ∫
RN

f(X,u)

(
∇α,β(ϕRθRγR),∇α,βu

)
RN

dX

∣∣∣∣
≤ 3C

R
‖f(X,u)‖2L2(RN ) +

C

R

∫
RN

|∇α,βu|2dX.(3.26)

From (3.23)-(3.26), we have

d

dt

∫
RN

(ϕRθRγR)|∇α,βu|2dX + 2λ

∫
RN

(ϕRθRγR)|∇α,βu|2dX

≤ 1

2

∫
∑

R

|g|2dX + 2`

∫
RN

|∇α,βu|2dX +
6C

R
‖ut‖2L2(RN )

+
6λC

R
‖u‖2L2(RN ) +

6C

R
‖f(X,u)‖2L2(RN )

+ 2
(2 + λ)C

R

∫
RN

|∇α,βu|2dX

≤ 1

2

∫
∑

R

|g|2dX +
6C

R
‖ut‖2L2(RN ) +

6C

R
‖f(X,u)‖2L2(RN )
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+ C1

∫
RN

(|u|2 + |∇α,βu|2)dX,(3.27)

where C1 = max{ 6λCR ; 2` + 2 (2+λ)C
R }. Multiplying (3.27) by e2λt and then

integrating over (T, t), we obtain∫
RN

(ϕRθRγR)|∇α,βu|2dX

≤ e−2λt
∫
RN

(ϕRθRγR)|∇α,βu(T )|2dX +
1

2
e−2λt

∫ t

T

e2λξ
∫
∑

R

|g|2dXdξ

+
6C

R
e−2λt

∫ t

T

e2λξ‖ut‖2L2(RN )dξ

+
6C

R
e−2λt

∫ t

T

e2λξ‖f(X,u)‖2L2(RN )dξ

+ C1e
−2λt

∫ t

T

e2λξ
∫
RN

(|u|2 + |∇α,βu|2)dXdξ

≤ e−2λt‖u(T )‖2S1(RN ) +
1

4λ

∫
∑

R

|g|2dX

+
6C

R
e−2λt

∫ t

T

e2λξ‖ut‖2L2(RN )dξ

+
6C

R
e−2λt

∫ t

T

e2λξ‖f(X,u)‖2L2(RN )dξ

+ C1e
−2λt

∫ t

T

e2λξ
∫
RN

(|u|2 + |∇α,βu|2)dXdξ.(3.28)

Noting that for given ε > 0, there is T1 = T1(ε) > 0 such that for all t ≥ T1,

(3.29) e−2λt‖u(T1)‖2S1(RN ) ≤
ε

5
.

On the other hand, since g ∈ L2(RN ), there is K1 = K1(ε) such that for all
R ≥ K1,

(3.30)
1

4λ

∫
∑

R

|g|2dX ≤ ε

5
.

For the third term on the right hand, it follows from Lemmas 3.1, 3.2 and 3.3
that there is K2 = K2(ε) ≥ K1 such that for all R ≥ K2 and T2 > 0 such that
for all t ≥ T2,

C1e
−2λt

∫ t

T2

e2λξ
∫
RN

(|u|2 + |∇α,βu|2)dXdξ ≤ ε

5
,(3.31)

6C

R
e−2λt

∫ t

T2

e2λξ‖ut‖2L2(RN )dξ ≤
ε

5
.(3.32)
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On the other hand, from (1.1) we have f(X,u) = −ut + Pα,βu − λu + g.
Using Lemmas 3.3 and 3.4, we obtain f(X,u(t)) ∈ L2(RN ) for t large enough.
Therefore, there is K3 = K3(ε) ≥ K2 such that for all R ≥ K3 and T3 > 0 such
that for all t ≥ T3,

(3.33)
6C

R
e−2λt

∫ t

T3

e2λξ
∫
RN

|f(X,u)|2dXdξ ≤ ε

5
.

Let T = max{T1, T2, T3}, then by (3.28)-(3.33) we find that for all R ≥ K ≥ K3

and t ≥ T , ∫
RN

(ϕRθRγR)|∇α,βu|2dX ≤ ε,

and hence for all R ≥ K and t ≥ T ,∫
RN\B∗

R

|∇α,βu|2dX ≤
∫
RN

(ϕRθRγR)|∇α,βu|2dX ≤ ε.

Then, we complete the proof. �

Now, we show the asymptotic compactness of S(t) in S1(RN ).

Lemma 3.9. Suppose that (F) and (G) hold. Then S(t) is asymptotically
compact in S1(RN ), that is, for any bounded sequence {xn} ⊂ S1(RN ) and any
sequence tn ≥ 0, tn →∞, {S(tn)xn} has a convergent subsequence with respect
to the topology of S1(RN ).

Proof. Similarly to Lemma 3.6, given K > 0, denote

B∗K = BRN1 (0,K)×BRN2 (0,K)×BRN3 (0,K1+α+β) and BcK = RN\B∗K .

Then, by Lemmas 3.5 and 3.8, for the given ε > 0, there exist K = K(ε) > 0
and T = T (ε) > 0 such that for t ≥ T ,

‖un(t)‖S1(Bc
K) ≤ ε.

Since tn → ∞, there is N1 = N1(ε) > 0 such that tn ≥ T for all n ≥ N1 and
hence we obtain that, for all n ≥ N1,

(3.34) ‖un(tn)‖S1(Bc
K) ≤ ε.

By Lemma 3.4, there exist C > 0 and N2 > 0 such that for all n ≥ N2,

||un(tn)||S2(B∗
K) ≤ C.

Since the compactness of the embedding S2(B∗K) ↪→ S1(B∗K) (see [5]), the
sequence {un(tn)} is precompact in S1(B∗K). Therefore, for the given ε > 0,
{un(tn)} has a finite covering in S1(B∗K) of balls of radii less than ε, which
along with (3.34) shows that {un(tn)} has a finite covering in S1(RN ) of balls
of radii less than ε, and thus {un(tn)} is precompact in S1(RN ). �

We are now ready to prove the existence of a global attractor for S(t) in
S1(RN ).
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Theorem 3.10. Suppose that (F) and (G) hold. Then the semigroup S(t)
generated by the problem (1.1) has a global attractor AS1 in S1(RN ).

Proof. By Lemma 3.2, there is a bounded absorbing set for S(t) in S1(RN ). In
addition, S(t) is asymptotically compact in S1(RN ) by Lemma 3.9. Thus, we
get the conclusion. �
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