DOI QR코드

DOI QR Code

부유 및 퇴적의 분체 조건이 화재폭발 특성에 미치는 영향

Effect of Powder Condition on the Fire and Explosion Characteristics of Suspended and Deposited Dusts

  • 한우섭 (한국산업안전보건공단 산업안전보건연구원) ;
  • 서동현 (한국산업안전보건공단 산업안전보건연구원) ;
  • 최이락 (한국산업안전보건공단 산업안전보건연구원) ;
  • 임진호 (한국산업안전보건공단 산업안전보건연구원)
  • Han, Ou-Sup (Occupational Safety & Health Research Institute) ;
  • Seo, Dong-Hyun (Occupational Safety & Health Research Institute) ;
  • Choi, Yi-Rac (Occupational Safety & Health Research Institute) ;
  • Lim, Jin-Ho (Occupational Safety & Health Research Institute)
  • 투고 : 2022.03.02
  • 심사 : 2022.04.05
  • 발행 : 2022.05.01

초록

동일 분체특성의 분진이 평균입경, 농도, 분진조건(부유 또는 퇴적) 변화에 따른 화재폭발 위험성을 조사하였다. 이를 위해 20L분진폭발시험장치, 열중량분석장치, 연소속도시험장치(UN시험법)를 사용하였다. 4종 분진(Sugar, Mg, Al, Zr)의 입경이 서로 다른 8개 분진 시료에 대하여 부유 분진의 폭발특성과 화염전파속도(FPV), 그리고 퇴적분진의 화염확산속도(FSV)를 조사하였다. 부유 분진 조건에서 Mg 및 Al 분진은 입경이 감소하면 폭발 위험성이 증가하였지만, Sugar는 입경 변화에 따른 폭발 위험성의 영향이 거의 나타나지 않았다. 부유 분진의 화염전파속도(FPV)는 마이크로 범위에서의 입경 변화보다 마이크로에서 나노로 입경이 감소하면 크게 증가하였다. 퇴적층의 화염확산속도(FSV)는 수평면(기울기 0°)보다 경사면(기울기 30°)에서 증가하는 경향을 나타냈으며, 경사면(기울기 30°) 퇴적층 조건에서는 상방 전파가 하방 전파보다 높게 나타났다.

An experimental investigation was conducted on the influences of median size, dust concentration, dust condition (cloud and layer) for the fire and explosion hazard assessment of dusts with the same powder property. For this purpose, tests have been performed in accordance with 20 L explosion sphere, thermogravi- metric analyze, combustion rate tester (UN method). We investigated the explosion characteristics and flame propagation velocity (FPV) in dust cloud and the flame spread velocity(FSV) over dust layer on 8 dust samples with different particle sizes of 4 types of dusts (Sugar, Mg, Al, Zr). An explosion hazard increased with decreasing particle size in Mg and Al dust clouds, but sugar did not show the effect of explosion hazard due to particle size change in dust clouds. The flame propagation velocity (FPV) of suspended dusts increased significantly when the particle size decreased from micro to nano than the variation of particle size in micro range. The flame spread velocity (FSV) over dust layer showed a tendency to increase over the inclined dust layers (30° slope) rather than the horizontal dust layers (0° slope). The flame spread rate (FSV) over dust layers increased on the inclined dust layer (30° slope) rather than the horizontal dust layer (0° slope) and was higher upward flame than the downward flame in condition of inclined dust layers(30° slope).

키워드

참고문헌

  1. VDI-2263, Dust Fires and Dust Explosions ; Hazards, Assessment, Protective Measures (2018).
  2. Han, O. S., "Combustion Characteristics Assessment of Flammable Solids by GHS Classification Criteria," KOSHA, 2020-OSHRI-1039, 27-30(2020).
  3. Kim, H. M., Hwang, C. C., "Heating and Ignition of Combustible Dust Layers on a Hot Surface: Influence of Layer Shrinkage," Combustion and Flame, 105, 471-485(1996). https://doi.org/10.1016/0010-2180(95)00110-7
  4. Saad, A.El-Sayed, Ahmed M. Abdel-Latif, "Smolder-ing Combustion of Dust Layer on Hot Surface," J. Loss Prev. in the Process Ind., 13, 509-517(2000). https://doi.org/10.1016/S0950-4230(00)00004-8
  5. Fawaz, K. Sweis, "The Effect of Admixed Material on the Flaming and Smouldering Combustion of Dust Layers," J. Loss Prev. in the Process Ind., 17, 505-508(2004). https://doi.org/10.1016/j.jlp.2004.08.006
  6. Janes, A., Carson, D., Accorsi, A., Chaineaux, J., Tribouilloy, B. and Morainvillers, D., "Correlation between Self-ignition of a Dust Layer on a Hot Surface and in Baskets in an Oven," J. Hazardous Materials, 159, 528-535(2008). https://doi.org/10.1016/j.jhazmat.2008.02.057
  7. Agnes, J., Alexis, V. and Olivier, D., "Ignition Temperatures of Dust Layers and Bulk Storages in Hot Environments," J. Loss Prev. in the Process Ind., 59, 106-117(2019). https://doi.org/10.1016/j.jlp.2018.12.005
  8. Song, Y. and Zhang., Q., "Criterion and Propagation Process of Spark-induced Dust Layer Explosion," Fuel, 267, 117205 (2020). https://doi.org/10.1016/j.fuel.2020.117205
  9. Huang, L., Jiang, H. and Gao, W., "Effect of Particle Size and Dust Layer Size on Ignition Characteristics of PMMA Dust Layer on Hot Surface," J. Loss Prev. in the Process Ind., 71, 1-12(2021).
  10. Polka, M., Salamonowicz, Z., Wolinski, M. and Kukfisz, B., "Experimental Analysis of Minimal Ignition Temperatures of a Dust Layer and Clouds on a Heated Surface of Selected Flammable Dusts," Procedia Engineering, 45, 414-423(2012). https://doi.org/10.1016/j.proeng.2012.08.179
  11. BS EN 50281-2-1; Electrical Apparatus for Use in the Presence of Combustible Dust - Part 2-1: Test Methods - Methods of Determining Minimum Ignition Temperatures (1999).
  12. Danzi, E., Marmo, L. and Riccio, D., "Minimum Ignition Temperature of Layer and Cloud Dust Mixtures," J. Loss Prev. in the Process Ind., 36, 326-334(2015). https://doi.org/10.1016/j.jlp.2015.04.003
  13. EN 14034-1, "Determination of Explosion Characteristics of Dust Clouds-Part 1 : Determination of the Maximum Explosion Pressure Pmax of Dust Clouds," (2004).
  14. EN 14034-2, "Determination of Explosion Characteristics of Dust Clouds-Part 2: Determination of the Maximum Rate of Explosion Pressure Rise (dP/dt)max of Dust Clouds," (2006).
  15. EN 14034-3, "Determination of Explosion Characteristics of Dust Clouds-Part 3: Determination of the Lower Explosion Limit LEL of Dust Clouds," (2006).
  16. Han, O. S. and Lee, K. W., "Explosion Characteristics and Flame Velocity of Suspended Plastic Powders," Korean Chem. Eng. Res., 54(3), 367-373(2016). https://doi.org/10.9713/kcer.2016.54.3.367
  17. Recommendations on the Transport of Dangerous Goods, Manual of Test and Criteria, 7th Revised Edition, UN, 353-358(2019).
  18. Han, O. S., "Hazard Evaluation of Ignition and Fire-Explosion by Powder Condition in the Process," KOSHA, 2021-OSHRI-861, 45-47(2021).
  19. Database for Major industrial accidents, Korea Occu pational Safety and Health Agency(2000~2021).
  20. Sundaram, D. S., Puri, P. and Yang, V., "A General Theory of Ignition and Combustion of Nano- and Micron-sized Aluminum Particles," Combustion and Flame, 169, 94-109(2016). https://doi.org/10.1016/j.combustflame.2016.04.005
  21. Chang, P. J., Mogi, T. and Dobashi, T., "Flame Propagation Through Dust Clouds of Nano and Micron Scale Aluminum Pparticles," J. Loss Prev. Process Ind., 68, 104266(2020). https://doi.org/10.1016/j.jlp.2020.104266
  22. Dufaud, O., Traore, M., Perrin, L., Chazelet, S. and Thomas, D., "Experimental Investigation and Modelling of Aluminum Dusts Explosions in the 20 L Sphere," J. Loss Prev. Process Ind., 23, 226-236(2010). https://doi.org/10.1016/j.jlp.2009.07.019
  23. Han, O. S., "Hazards of Explosion and Ignition of Foods Dust," Korean Chem. Eng. Res., 55(5), 629-637(2017).
  24. Kudo, Y., Torikai, H. and Ito, A., "Effects of Particle Size on Flame Spread over Magnesium Powder Layer," Fire Safety J., 45, 122-128(2010). https://doi.org/10.1016/j.firesaf.2009.12.003
  25. Huang, Y., Risha, G. A., Yang, V. and Yetter, R. A., "Effect of Particle Size on Combustion of Aluminum Particle Dust in Air," Combustion and Flame, 156, 5-13(2009). https://doi.org/10.1016/j.combustflame.2008.07.018
  26. Myers, T. J., "Reducing Aluminum Dust Explosion Hazards: Case Study of Dust Inerting in an Aluminum Buffing Operation," J. Hazardous Materials, 159, 72-80(2008). https://doi.org/10.1016/j.jhazmat.2008.02.106
  27. Zhao, J., Tang, G., Zhang, Y. and Sun, J., "Effects of Altitude and Inclination on the Flame Structure over the Insulation Material PS based on Heat and Mass Transfer," Int. J. Heat Mass Trans., 90, 1046-1055(2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.07.046
  28. Yuan, C., Cai, J., Amyotte, P., Li, C., Bu, Y., Liu, K. and Li, G., "Fire Hazard of Titanium Powder Layers mixed with Inert Nano TiO2 Powder," J. Hazard. Mater., 346, 19-26(2018). https://doi.org/10.1016/j.jhazmat.2017.12.010