DOI QR코드

DOI QR Code

Fabrication of Portable Self-Powered Wireless Data Transmitting and Receiving System for User Environment Monitoring

사용자 환경 모니터링을 위한 소형 자가발전 무선 데이터 송수신 시스템 개발

  • Jang, Sunmin (Department of Mechanical Engineering, Kyung Hee University) ;
  • Cho, Sumin (Department of Mechanical Engineering, Kyung Hee University) ;
  • Joung, Yoonsu (Department of Mechanical Engineering, Kyung Hee University) ;
  • Kim, Jaehyoung (Department of Mechanical Engineering, Kyung Hee University) ;
  • Kim, Hyeonsu (Department of Mechanical Engineering, Kyung Hee University) ;
  • Jang, Dayeon (Department of Mechanical Engineering, Kyung Hee University) ;
  • Ra, Yoonsang (Department of Mechanical Engineering, Kyung Hee University) ;
  • Lee, Donghan (Department of Mechanical Engineering, Kyung Hee University) ;
  • La, Moonwoo (School of Mechanical Engineering, Korea University of Technology & Education) ;
  • Choi, Dongwhi (Department of Mechanical Engineering, Kyung Hee University)
  • 장순민 (경희대학교 기계공학과) ;
  • 조수민 (경희대학교 기계공학과) ;
  • 정윤수 (경희대학교 기계공학과) ;
  • 김재형 (경희대학교 기계공학과) ;
  • 김현수 (경희대학교 기계공학과) ;
  • 장다연 (경희대학교 기계공학과) ;
  • 라윤상 (경희대학교 기계공학과) ;
  • 이동한 (경희대학교 기계공학과) ;
  • 라문우 (한국기술교육대학교 기계공학부) ;
  • 최동휘 (경희대학교 기계공학과)
  • Received : 2021.12.06
  • Accepted : 2021.12.29
  • Published : 2022.05.01

Abstract

With the rapid advance of the semiconductor and Information and communication technologies, remote environment monitoring technology, which can detect and analyze surrounding environmental conditions with various types of sensors and wireless communication technologies, is also drawing attention. However, since the conventional remote environmental monitoring systems require external power supplies, it causes time and space limitations on comfortable usage. In this study, we proposed the concept of the self-powered remote environmental monitoring system by supplying the power with the levitation-electromagnetic generator (L-EMG), which is rationally designed to effectively harvest biomechanical energy in consideration of the mechanical characteristics of biomechanical energy. In this regard, the proposed L-EMG is designed to effectively respond to the external vibration with the movable center magnet considering the mechanical characteristics of the biomechanical energy, such as relatively low-frequency and high amplitude of vibration. Hence the L-EMG based on the fragile force equilibrium can generate high-quality electrical energy to supply power. Additionally, the environmental detective sensor and wireless transmission module are composed of the micro control unit (MCU) to minimize the required power for electronic device operation by applying the sleep mode, resulting in the extension of operation time. Finally, in order to maximize user convenience, a mobile phone application was built to enable easy monitoring of the surrounding environment. Thus, the proposed concept not only verifies the possibility of establishing the self-powered remote environmental monitoring system using biomechanical energy but further suggests a design guideline.

최근 반도체와 같은 정보통신 기술의 발전과 함께 사물인터넷(IoT) 기술 발전이 급격히 이루어지면서 센서와 무선 통신 기능을 내장하여 주변 사물 및 환경 조건을 감지 및 분석하여 대응하는 원격 환경 모니터링 기술이 주목받고 있다. 하지만, 기 개발된 원격 환경 모니터링 시스템은 모두 별도의 전원 공급 장치를 필요로 하기 때문에 시·공간적 기기 사용의 제한을 야기하여, 사용자의 불편함을 유발할 수 있다. 따라서, 본 연구에서는 생체 역학적 에너지의 역학적 특성이 고려된 기구학적 설계 기반 전자기 발전 소자(Electromagnetic generator, EMG)를 개발함으로써 이의 에너지 자립형 원격 환경 모니터링 구동을 위한 전원 공급 장치로써 활용한다. 낮은 진동 주기 및 큰 진폭 변화의 역학적 특성을 지닌 생체 역학적 에너지를 효과적으로 이용하기 위해 자석의 기구학적 배치를 통한 깨지기 쉬운 힘의 평형을 유도하는 Levitation-EMG (L-EMG)를 설계했다. 이를 통해, L-EMG는 외부 진동에 민감하게 반응하여 자석과 코일 간의 효과적인 상대 움직임을 야기하여 고품질 전기 에너지 공급을 가능하게 했다. 뿐만 아니라, 실제 환경 감지 센서와 무선 통신 모듈의 필요 전력을 최소화하기 위한 마이크로 컨트롤러(Micro control unit, MCU)를 구성하였으며, 내장기능 중 저전력모드(Sleep mode)를 접목하여 소비전력의 최소화 및 이의 구동시간 증가를 달성했다. 최종적으로 사용자의 편의성을 극대화하기 위해 휴대폰 어플리케이션을 구축하여 손쉽게 주변 환경 모니터링을 가능하게 했다. 따라서, 이번 연구는 생체역학적 에너지를 이용한 에너지 자립형 원격 환경 모니터링 구축 가능성을 검증할 뿐만 아니라, 더 나아가 별도의 외부 전원 없이 주변 환경 모니터링이 가능한 설계 방안을 제시할 수 있다.

Keywords

Acknowledgement

이 논문은 2020년도 한국기술교육대학교 교수 교육연구진흥과제 지원에 의하여 연구되었음.

References

  1. Laghari, A. A., et al., "A Review and State of Art of Internet of Things (IoT)," Archives of Computational Methods in Engineering, 1-19(2021).
  2. Srivastava, M. and Kumar, R., Smart Environmental Monitoring Based on IoT: Architecture, Issues, and Challenges, in Advances in Computational Intelligence and Communication Technology. 2021, Springer. p. 349-358.
  3. Sunny, A. I., et al., "Low-Cost IoT-Based Sensor System: A Case Study on Harsh Environmental Monitoring," Sensors, 21(1) 214(2021). https://doi.org/10.3390/s21010214
  4. Nie, Z., et al., "Improving High Rate Cycling Limitations of Thick Sintered Battery Electrodes by Mitigating Molecular Transport Limitations Through Modifying Electrode Microstructure and Electrolyte Conductivity," Molecular Systems Design & Engineering, 6(9) 708-712(2021). https://doi.org/10.1039/D1ME00082A
  5. Beeby, S. P., et al., "A Micro Electromagnetic Generator for Vibration Energy Harvesting," Journal of Micromechanics and Microengineering, 17(7), 1257(2007). https://doi.org/10.1088/0960-1317/17/7/007
  6. Cho, S., et al., "Universal Biomechanical Energy Harvesting from Joint Movements Using a Direction-switchable Triboelectric Nano-generator," Nano Energy, 71, 104584(2020). https://doi.org/10.1016/j.nanoen.2020.104584
  7. Fan, F.-R., Tian, Z.-Q. and Wang, Z. L., "Flexible Triboelectric Generator," Nano energy, 1(2), 328-334(2012). https://doi.org/10.1016/j.nanoen.2012.01.004
  8. Maharjan, P., et al., "A Fully Functional Universal Self-chargeable Power Module for Portable/wearable Electronics and Self-powered IoT Applications," Advanced Energy Materials, 10(48), 2002782(2020). https://doi.org/10.1002/aenm.202002782
  9. Wu, C., et al., "A Spring-based Resonance Coupling for Hugely Enhancing the Performance of Triboelectric Nanogenerators for Harvesting Low-frequency Vibration Energy," Nano Energy, 32, 287-293(2017). https://doi.org/10.1016/j.nanoen.2016.12.061
  10. Yong, S., et al., "Auto-Switching Self-Powered System for Efficient Broad-Band Wind Energy Harvesting Based on Dual-Rotation Shaft Triboelectric Nanogenerator," Advanced Energy Materials, 2101194 (2021).
  11. Ali, T. and Khan, F. U., "A Silicone Based Piezoelectric and Electromagnetic Hybrid Vibration Energy Harvester," Journal of Micromechanics and Microengineering, 31(5), 055003(2021). https://doi.org/10.1088/1361-6439/abda90
  12. Huang, M., et al., "A Magnetic-Coupled Nonlinear Electromagnetic Generator with Both Wideband and High-Power Performance," Micromachines, 12(8), 912(2021). https://doi.org/10.3390/mi12080912
  13. Hou, C., et al., "A Rotational Pendulum Based Electromagnetic/ triboelectric Hybrid-generator for Ultra-low-frequency Vibrations Aiming at Human Motion and Blue Energy Applications," Nano Energy, 63, 103871(2019). https://doi.org/10.1016/j.nanoen.2019.103871
  14. Maharjan, P., et al., "A Fully Enclosed, 3D Printed, Hybridized Nanogenerator with Flexible Flux Concentrator for Harvesting Diverse Human Biomechanical Energy," Nano Energy, 53, 213-224(2018). https://doi.org/10.1016/j.nanoen.2018.08.034