DOI QR코드

DOI QR Code

72m 초고강도 콘크리트 프리스트레스트 박스 거더의 수치 해석

Numerical Simulation of 72m-Long Ultra High Performance Concrete Pre-Stressed Box Girder

  • Mai, Viet-Chinh (Department of Civil Engineering, Kumoh National Institute of Technology) ;
  • Han, Sang Mook (Department of Civil Engineering, Kumoh National Institute of Technology)
  • 투고 : 2021.12.03
  • 심사 : 2022.02.21
  • 발행 : 2022.04.30

초록

이 논문은 72m 초고강도 콘크리트 섬유보강 콘크리트 프리스트레스트 박스거더의 비선형 거동을 해석하는 3차원 해석방법을 제시하였다. UHPC재료의 비선형 거동을 나타내기 위해 콘크리트 손상소성(CDP)모델을 채택하였다. 제시된 응력-변형률 관계 곡선에 근거한 수치해석 모델은 50m UHPC 프리스트레스트 박스 거더 휨실험결과로 검증하였다. 검증된 해석모델을 사용하여 72m UHPC 프리스트레스트 박스거더의 휨거동을 파악하는데 적용하였다. 각 하중단계에 따른 하중 변위관계, 응력상태 및 연결부분 상세를 해석하였다. 하중-변위관계 곡선과 설계하중 및 극한하중 비교 결과는 UHPC 박스거더 휨거동을 해석하는 적절한 수단으로써 비선형 유한요소법의 적용성을 입증하고 있다.

The study presents a three-dimensional approach to simulate the nonlinear behavior of a 72 m long Ultra High Performance Fiber Reinforced Concrete (UHPFRC) pre-stressed box girder for a pedestrian bridge in Busan, South Korea. The concrete damage plasticity (CDP) model is adopted to model the non-linear behavior of the UHPFRC material, in which the material properties are obtained from uniaxial compressive and tensile tests. The simulation model based on the proposed stress-strain curve is validated by the results of four-point bending model tests of a 50 m UHPFRC pre-stressed box girder. The results from the simulation models agree with the experimental observations and predict the flexural behavior of the 50 m UHPFRC pre-stressed box girder accurately. Afterward, the validated model is utilized to investigate the flexural behavior of the 72 m UHPFRC pre-stressed box girder. Here, the load-deflection curve, stress status of the girder at various load levels, and connection details is analyzed. The load-deflection curve is also compared with design load to demonstrate the great benefit of the slender UHPFRC box girder. The obtained results demonstrate the applicability of the nonlinear finite element method as an appropriate option to analyze the flexural behavior of pre-stressed long-span girders.

키워드

과제정보

The work reported in this paper was conducted during the sabbatical year of Kumoh National Institute of Technology in 2019.

참고문헌

  1. AASHTO (2007) AASHTO LRFD Bridge Design Specifications: SI Unit 4th Edition 2007, American Association of State Highway and Transportation Officials, pp.1~20.
  2. Bahij, S., Adekunle, S.K., Al-Osta, M., Ahmad, S., Al-Dulaijan, S.U., Rahman, M.K. (2018) Numerical Investigation of the Shear Behavior of Reinforced Ultra-High-Performance Concrete Beams, Struct. Concr., 19(1), p.305317.
  3. Chen, B., Xilun, M., Zhou, J. (2018) Experimental Study on a Full Scale 30M Span UHPC Box, 2nd International Conference on UHPC Materials and Structures (UHPC2018-China).
  4. Chen, L., Graybeal, B. (2010) Finite Element Analysis of Ultra-High Performance Concrete: Modeling Structural Performance of an AASHTO Type II Girder and a 2nd Generation Pi-Girder, FHWA-HRT-11-020.
  5. Curbach, M., Speck, K. (2008) Ultra High Performance Concrete under Biaxial Compression, Proceedings of Second International Symposium on Ultra High Performance Concrete, University of Kassel, Germany, p.477484.
  6. Da Silva, V.D. (2004) A Simple Model for Viscous Regularization of Elasto-plastic Constitutive Laws with Softening, Commun. Numer. Methods Eng., 20(7), pp.547~568. https://doi.org/10.1002/cnm.700
  7. Dassault Systemes Simulia Corp. (2016) Simulia, ABAQUS 6.14 user's Manuals.
  8. Guo, Q., Han, S.-M. (2014) Flexural Behavior of Ultra High Performance Fiber Reinforced Concrete Segmental Box Girder, J. Korea Concr. Inst., 26(2), pp.109~116. https://doi.org/10.4334/JKCI.2014.26.2.109
  9. Hussein, H.H., Walsh, K.K., Sargand, S.M., Steinberg, E.P. (2016) Interfacial Properties of Ultrahigh-Performance Concrete and High-Strength Concrete Bridge Connections, J. Mater. Civil Eng., 28(5), 04015208. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001456
  10. Kmiecik, P., Kaminski, M. (2011) Modelling of Reinforced Concrete Structures and Composite Structures with Concrete Strength Degradation Taken into Consideration, Arch. Civ. Mech. Eng., 11(3), pp.623~636. https://doi.org/10.1016/S1644-9665(12)60105-8
  11. Lee, J., Fenves, G.L. (1998) Plastic-Damage Model for Cyclic Loading of Concrete Structures, J. Eng. Mech., 124(8), pp.892~900. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892)
  12. Lubliner, J., Oliver, J., Oller, S., Onate, E. (1989) A Plastic-Damage Model, Int. J. Solids & Struct., 25(3), pp.299~326. https://doi.org/10.1016/0020-7683(89)90050-4
  13. Makhbal, T.O., Kim, D.H., Han, S.M. (2018) Finite Element Analysis of Ultra High Performance Fiber Reinforced Concrete 50M Composite Box Girder, J. Korean Recycl. Constr. Resour. Inst., 46(4), pp.100~107.
  14. Tibea, C., Bompa, D.V. (2020) Ultimate Shear Response of Ultra-High-Performance Steel Fibre-Reinforced Concrete Elements, Arch. Civil & Mech. Eng., 20(2), pp.1~16. https://doi.org/10.1007/s43452-019-0008-6
  15. Vazquez-Herrero, C., Martinez-Lage, I., Aguilar, G., Martinez-Abella, F. (2013) Evaluation of Strand Bond Properties Along the Transfer Length of Prestressed Lightweight Concrete Members, Eng. Struct., 49, pp.1048~1058. https://doi.org/10.1016/j.engstruct.2012.11.027
  16. Voo, Y.L., Foster, S., Pek, L.G. (2017) Ultra-High Performance Concrete-Technology for Present and Future, High Tech Concrete: Where Technology and Engineering Meet, Proceedings of the 2017 fib Symposium, Maastricht, The Netherlands, pp.12~14.
  17. Yoo, D.Y., Banthia, N. (2017) Mechanical and Structural Behaviors of Ultra-High-Performance Fiber-Reinforced Concrete Subjected to Impact and Blast, Constr. & Build. Mater., 149, pp.416~431. https://doi.org/10.1016/j.conbuildmat.2017.05.136
  18. Zhang, G., Graybeal, B.A. (2015) Development of UHPC Pi-Girder Sections for Span Length up to 41m, J. Bridge Eng., 20(3), 04014068. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000653
  19. Zhu, L., Wang, J.J., Li, X., Zhao, G.Y., Huo, X.J. (2020) Experimental and Numerical Study on Creep and Shrinkage Effects of Ultra High-Performance Concrete Beam, Compos. Part B., 184, 107713. https://doi.org/10.1016/j.compositesb.2019.107713