DOI QR코드

DOI QR Code

All-Solid-State Electrochromic Film with WO3/NiO Complementary Structure

WO3/NiO 상호 보완적인 구조의 전고체 전기변색 필름

  • Shin, Minkyung (Electronic Convergence Materials and Devices Research Center, Korea Electronics Technology Institute) ;
  • Lee, Sun Hee (Electronic Convergence Materials and Devices Research Center, Korea Electronics Technology Institute) ;
  • Seo, Intae (Electronic Convergence Materials and Devices Research Center, Korea Electronics Technology Institute) ;
  • Kang, Hyung-Won (Electronic Convergence Materials and Devices Research Center, Korea Electronics Technology Institute) ;
  • Han, Seung Ho (Electronic Convergence Materials and Devices Research Center, Korea Electronics Technology Institute)
  • 신민경 (한국전자기술연구원 융복합전자소재연구센터) ;
  • 이선희 (한국전자기술연구원 융복합전자소재연구센터) ;
  • 서인태 (한국전자기술연구원 융복합전자소재연구센터) ;
  • 강형원 (한국전자기술연구원 융복합전자소재연구센터) ;
  • 한승호 (한국전자기술연구원 융복합전자소재연구센터)
  • Received : 2022.02.03
  • Accepted : 2022.02.10
  • Published : 2022.05.01

Abstract

An all-solid-state electrochromic film was fabricated by laminating tungsten oxide (WO3) and nickel oxide (NiO) thin films deposited by a reactive DC magnetron sputtering on flexible ITO films. The influence of oxygen partial pressure on the crystal structure, microstructure, optical properties, and electrochromic properties of WO3 and NiO thin films were investigated. WO3 and NiO films showed the best electrochromic properties under the flow of Ar:O2=80:20 and Ar:O2=90:10, respectively. The EC film fabricated with an optimized WO3 and NiO films showed a high coloration efficiency, a fast response time, and a stable optical modulation. It is expected that flexible EC window films will pave the way for the next-generation energy-saving windows.

Keywords

Acknowledgement

본 논문은 산업통상자원부 및 한국산업기술진흥원의 스마트 특성화 기반구축사업의 일환으로 수행하였음(P0017684, 나노기술 기반 대면적 기능성 필름 사업화 지원 플랫폼 구축사업).

References

  1. C. G. Granqvist, E. Avendano, and A. Azens, Thin Solid Films, 442, 201 (2003). [DOI: https://doi.org/10.1016/S0040-6090(03)00983-0]
  2. C. G. Granqvist, Thin Solid Films, 564, 1 (2014). [DOI: https://doi.org/10.1016/j.tsf.2014.02.002]
  3. D. R. Rosseinsky and R. J. Mortimer, Adv. Mater., 13, 783 (2001). [DOI: https://doi.org/10.1002/1521-4095(200106)13:11<783::aid-adma783>3.0.co;2-d]
  4. S. J. Lee, D. S. Choi, S. H. Kang, W. S. Yang, S. Nahm, S. H. Han, and T. Y. Kim, ACS Sustainable Chem. Eng., 7, 7111 (2019). [DOI: https://doi.org/10.1021/acssuschemeng.9b00052]
  5. S. J. Lee, S. H. Lee, H. W. Kang, S. Nahm, B. H. Kim, H. Kim, and S. H. Han, Chem. Eng. J., 416, 129028 (2021). [DOI: https://doi.org/10.1016/j.cej.2021.129028]
  6. S. J. Lee, T. G. Lee, S. Nahm, D. H. Kim, D. J. Yang, and S. H. Han, J. Alloys Compd., 815, 152399 (2020). [DOI: https://doi.org/10.1016/j.jallcom.2019.152399]
  7. S. H. Lee, S. J. Lee, R. Kim, H. W. Kang, I. Seo, B. H. Kim, and S. H. Han, Sol. Energy Mater. Sol. Cells, 234, 111435 (2022). [DOI: https://doi.org/10.1016/j.solmat.2021.111435]
  8. Y. Zhao, X. Zhang, X. Chen, W. Li, L. Wang, Z. Li, J. Zhao, F. Endres, and Y. Li, Electrochim. Acta, 367, 137457 (2021). [DOI: https://doi.org/10.1016/j.electacta.2020.137457]
  9. D. Dong, W. Wang, G. Dong, Y. Zhou, Z. Wu, M. Wang, F. Liu, and X. Diao, Appl. Surf. Sci., 357, 799 (2015). [DOI: https://doi.org/10.1016/j.apsusc.2015.09.056]
  10. M. Da Rocha and A. Rougier, Appl. Phys. A, 122, 370 (2016). [DOI: https://doi.org/10.1007/s00339-016-9923-z]