
1. Introduction

The Brazilian multinational petroleum corporation Petrobras and 
partners are developing the Buzios oil field, which is approximately 
210 km offshore of Brazil. The Floating production storage and 
offloading (FPSO) is spread-moored in a maximum water depth of 
2,030 m and has facilities to receive oil from sub-sea wells. It also has 
production plant facilities to process fluids, stabilize them, and 
separate produced water and natural gas, which is re-injected into a 
dedicated reservoir. Processed liquids are metered, stored in the FPSO 
cargo storage tanks, and offloaded to export tankers. The design life of 
the FPSO is 30 years.

The relative water depth is defined as   , where    is 
the wave number,    is the angular frequency,  is the 
wavelength,  is the wave period,  is water depth, and  is gravity. 
According to DNV (2010a), it is normally not necessary to investigate 
wave periods longer than 18 s. Therefore, the relative water depth is 
greater than 25 for the project. When the relative water depth is greater 
than 2, deep-water wave theories are applicable (Chakrabarti, 1987; 
DNV, 2010b; Shin, 2019). 

Well-known wave theories include Airy theory, Stokes theory, 
Dean’s stream function theory, Fenton’s theory, and trochodial 
(Gerstner) theory for deep-water waves in offshore structure design. 
Trochodial theory is an exact solution of the Euler equation with 
vorticity. The first rotational solution was described by Gerstner in 
1802 and was independently rediscovered later by Rankine (1863). A 
mathematical analysis of trochodial theory was performed by 
Constantin (Henry, 2008). The wavelength is independent of the 
trochoidal wave’s height, unlike in Stokes’ wave theory and 
observations. The trajectories of a water particle are closed circles, in 
contrast with the usual experimental observation of Stokes drift 
associated with wave motion. Therefore, trochodial theory is of limited 
use for offshore structure design. 

Airy theory, Stokes theory, Dean’s stream function theory, and 
Fenton’s theory are irrotational wave theories, unlike Trochodial 
theory. The wavelength is also independent of Airy wave’s height, and 
Airy theory is applicable for  ≤ (Chakrabarti, 1987), where  
is the wave height. Therefore, Airy theory is unsuitable for describing 
waves near the Miche limit (DNV, 2010b); i.e., 

 , where  
is the wavelength calculated by Airy theory.
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The first nonlinear solution was reported by Stokes (1847), who 
calculated waves in infinite/finite depth. De (1955) and Skjelbreia et 
al. (1960) obtained the 5th-order solutions for waves in finite depth. 
Schwartz (1974) and Cokelet (1977) obtained solutions of 
higher-order expansions. Stokes theory is based on a perturbation 
method and provides a closed-form solution, but it does not satisfy two 
boundary conditions on the free surface. The 5th-order theory (De, 
1955; Skjelbreia and Hendrickson, 1960) is applicable for all deep 
waves (Chakrabarti, 1987), but the error of the theory is more than 1% 
for waves near the Miche limit (DNV, 2010b). Stokes theory gives 
non-conservative results for offshore structure design.

Based on the use of truncated Fourier expansions for field quantities, 
Chappelear (1961) and Dean (1965) developed a Fourier 
approximation method. By choosing expansions to satisfy the Laplace 
equation and the BBC, the problem is reduced to solving a set of 
nonlinear equations for each of the Fourier coefficients. Dean’s stream 
function theory (Dean, 1965) is a purely numerical procedure (DNV, 
2010b). It requires order higher than 11 for describing waves near the 
Miche limit (DNV, 2010b). Nevertheless, its error is more than 1% 
(DNV, 2010b).

Rienecker and Fenton (1981) adopted the stream function expansion 
(Dean, 1965) and directly solved for the coefficients by Newton’s 
method. This method was further simplified by Fenton (1988). The 
major simplification is that all the partial derivatives are obtained 
numerically. The most error results from the reason that the wave 
profile and the Fourier coefficients are simultaneously calculated in 
Fenton's theory (Fenton, 1988). To reduce the error, Fenton’s theory 
requires more series order than 64 (Rienecker and Fenton, 1981). 
However, since the stream function expansions contain hyperbolic 
functions, neither of these stream function approaches can be applied 
for deep-water waves. 

Shin (2016) used a Fourier approximation and directly solved the 
coefficients by Newton’s method, but there are some differences 
between Shin’s (2016) and Fenton’s theories (Rienecker et al., 1981; 
Fenton 1988). While Fenton’s theory (Rienecker and Fenton, 1981; 
Fenton 1988) adopted the stream function (Dean, 1965), Shin (2016) 
adopted the velocity potential. Fenton’s theory adopted the moving 
coordinate system introduced by Dean (1965), but Shin (2016) 
adopted a dimensionless coordinate system. The moving coordinate 
system requires partial derivatives with regard to the wavelength since 
the wavelength is coupled to the Fourier coefficients, but the 
dimensionless coordinate system does not. Therefore, Newton’s 
method was further simplified (Shin, 2016). While the wave profile 
and the Fourier coefficients are simultaneously calculated in Fenton’s 
theory, they are independently calculated by Shin (2016). As a result, 
the required series order and total error are dramatically reduced (Shin, 
2016). 

These problems were discussed with Petrobas for the project. It was 
agreed that Shin’s (2016) wave theory would be applied for calculating 
wave loads on hard piping riser structures because the theory has less 
error and provides greater wave loads than 5th-order Stokes theory 

(Chakrabarti, 1987; De, 1955; Stokes, 1847; Stokes, 1880; DNV, 
2010b; Skjelbreia and Hendrickson, 1960). For the application, the 
results from Shin (2016) were further simplified in this study. The 
Fourier series is represented for deep-water waves, and all Fourier 
coefficients and all related parameters are represented with Newton’s 
polynomials. As a result, this study provides a closed-form solution for 
deep-water waves. A wave in Miche’s limit was calculated and 
compared to that of 5th-order Stokes theory. The profiles, velocities, 
and accelerations were also compared to each other for verification.

2. Coordinate Systems

For the description of a progressive water wave, two coordinate 
systems are adopted. One is the conventional coordinate system  
shown in Fig. 1. The origin is located on the still water line. The x-axis 
is in the direction of wave propagation, the y-axis points upwards, and 
 is time. The fluid domain is bounded by a free surface    . 

The other coordinate system  is the dimensionless stationary 
frame shown in Fig. 2. The origin is located at the point under the crest 
on the reference line, which is the horizontal line passing through two 
points at 

 ±° on the free surface and two phases of  = ±90°. 
Therefore, the wave profile is a fixed, periodic, even function in the 
system. The horizontal axis is the phase,    (  ≤ ≤). 
The vertical axis is the dimensionless elevation from the reference 
line,   in ≤, where   is the dimensionless free 
surface elevation from the reference line.

The dimensionless coordinate system provides several advantages 
besides the one mentioned in previous section. One independent 
variable is removed in the coordinate system. Therefore, the 
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Korteweg-de Vries equation and the Benjamin-Bona equation are 
presented with ordinary differential equations in the coordinate 
system. The KFSBC is presented with an exact differential equation in 
the coordinate system.

One parameter is removed in this coordinate system. While 
deep-water waves are described with two parameters (i.e., wave height 
and wave period) in a conventional coordinate system or in a moving 
coordinate system (Dean, 1965), they are described with only one 
parameter, the linear steepness   , in the dimensionless 
coordinate system. Furthermore, the linear steepness is in the range of 
 ≤〈 since there is a wave-height limitation. Therefore, it is 
possible to convert the result from Shin (2016) to a closed-form 
solution.

3. Fourier Series Approximation

For deep-water waves, the solution is represented as follows. By 
using Fourier series approximation, the velocity potential is presented 
as follows:

ϕ 




  



sin (1)

where  is a Fourier coefficient, and  is the required Fourier series 
order. The velocity potential satisfies the Laplace equation and the 
BBC. After differentiating Eq. (1) with respect to  and , the 
horizontal water-particle velocity is: 

  
  



cos (2)

where ≝ is the wave celerity. The vertical water-particle velocity 
is:

  
  



sin (3)

The water-particle accelerations in the horizontal direction and the 
vertical direction are represented by:

∂

∂
 




  



 sin (4)

∂

∂





  



cos (5)

From the KFSBC, the wave profile is calculated as follows:

 
  



 coscos

  (6)

Using Bernoulli’s equation, the pressure is calculated as follows:





   


  

 









(7)

where  is the water density, and  and  are dimensionless horizontal 
and vertical velocities defined by ≝ and ≝.    
and 

  are velocities at the phase of  = ±90° on the free 
surface. By applying the DFSBC in Eq. (7), the other wave profile is 
calculated as follows:




 

 


   





 (8)

The linear steepness    is a known constant for a particular 
wave. Dimensionless wave height (steepness) is defined by    (: 
wave height), which provides the dispersion relation because the wave 
number is calculated as   . 

4. Wave Profile

An implicit function   can be considered as an equation with 
respect to the dependent variable  because the independent variable  
is known. Therefore, using Newton’s method, the explicit 
representation of the function is presented:


→∞
lim   (9)

where n stands for a step of Newton’s method, and    is:

   ′

 (10)

where  is the error in the KFSBC defined by Eq. (6) as follows: 

  
  



coscos

  (11)

 
′ is the first-order partial derivative with respect to the variable . 
Therefore, we have:

′ 
  



cos (12)

Because 〈 for all waves, the first-step solution  is calculated 
with the power series expansion of  in , i.e., 

∑  
∞



 while ignoring the higher-order terms after the 

first order. Because   for all phases, the power series 
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expansion is a linear equation with respect to , i.e., ′ . 
Then we have:




 
  




cos


  



coscos

 
(13)

When  ≤0.98992, Newton’s method rapidly and absolutely 
converges to a complete solution. Therefore, max=0.98992 is the limit 
in this study. Since the limit is greater than the Miche limit (DNV, 
2010b; Shin, 2019; Chakrabarti, 1987), which is 0.28, the proposed 
method can be used for all deep-water waves. 

5. Verification

Fourier coefficients were determined so that the two profiles meet at 
four phases:  = 0°, 30°, 90°, and 180°. Therefore, Eq. (6) satisfies the 
KFSBC for all phases and satisfies the DFSBC at only the four phases. 
Eq. (8) satisfies the DFSBC for all phases and satisfies the KFSBC at 
only the four phases, but the difference of the two profiles is very 
small. 

The other wave profile can be calculated by applying the same 
method presented in section 4 to Eq. (8) or by substituting the result of 
Eq. (9) into the right side of Eq. (8). A wave with a period of 6 s and 
height of 7.87 m was calculated by the proposed method and by 
5th-order Stokes theory. The wave is in the Miche limit. Wave profiles 
are compared in Fig. 3. The red solid line is the profile from KFSBC 
and was calculated with Eq. (6). The green dotted line is the profile 
from DFSBC and was calculated with Eq. (8). It is extremely difficult 
to distinguish the two curves. The purple dashed line is the profile 
calculated with 5th-order Stokes theory. Bernoulli’s constants were 
also calculated on the free surface. The blue solid line is Bernoulli’s 
constant from the proposed method, and the blue dashed line is 
Bernoulli’s constant calculated with 5th-order Stokes theory. 

The constants represent error in the DFSBC. If there is no error in 
the DFSBC, the constant is presented with a horizontal straight line 
like the blue solid line from Bernoulli’s principle. Therefore, the blue 
dashed line shows that Stokes theory has some error in the DFSBC. 
The blue solid line has a total RMSE (Chakrabarti, 1987) of 

-4

-3

-2

-1

0

1

2

3

4

5

6

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

El
ev

at
io

n 
[m

]

Phase [deg]

Profile from KFSBC

Profile from DFSBC

Profile by Stokes

Bernoulli constant by this study

Bernoulli's constant by Stokes

Fig. 3 Wave profiles and Bernoulli’s constants on the free surface

-4

-2

0

2

4

6

8

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

Ve
lo

cit
iy

 o
n 

th
e 

fr
ee

 su
rf

ac
e 

[m
/s

]

Phase [deg]

Horizontal velocity by this study

Vertical velocity by this study

Vertical velocity by 5th Stokes theory

Horizontal velocity by 5th Stokes theory

Fig. 4 Water particle velocities on the free surface 

-10

-8

-6

-4

-2

0

2

4

6

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

Ac
ce

le
ra

tio
n 

on
 t

he
 fr

ee
 su

rf
ac

e 
[m

/s
^2

]

Phase [deg]

Horizontal acceleration by this study

Vertical acceleration by this study

Vertical acceleration by Stokes

Horizontal acceleration by Stokes

Fig. 5 Water particle accelerations on the free surface

7.25×10-2%, but the blue dashed line has a total RMSE of 0.37%. In 
addition to the error, Stokes theory has 1.42% error in KFSBC, unlike 
the proposed method. Therefore, the total error of Stokes theory is 
1.79%.

The wavelength is 64.8 m in the proposed method and 64.52 m in 
Stokes theory. = 56.21 m is obtained by Airy theory. The 
wavelength calculated by the proposed method depends on the wave 
height, unlike Airy theory or trochodial theory.

Water particle velocities on the free surface are presented in Fig. 4. 
The two solid lines were calculated by the proposed method. The two 
dashed lines were calculated by 5th-order Stokes theory. The two 
symmetric curves represent horizontal velocities. There is a big 
difference in the horizontal velocity under the crest, unlike the wave 
profiles shown in Fig. 3. As a result, there is more difference in the 
drag force since the force is proportional to the square of the velocities. 

Water particle accelerations on the free surface are presented in Fig. 
5. The two solid lines were calculated by the proposed method. The 
two dashed lines were calculated by 5th-order Stokes theory. The two 
symmetric curves represent vertical accelerations. There are big 
differences in the acceleration. As a result, there are big differences in 
the inertia force since the force is proportional to the acceleration.

Figs. 4–5 show that Stokes theory gives non-conservative results for 
offshore structure design. The analysis results are summarized in 
Table 1. 

Even though the series order of the proposed method is less than in 
Stokes theory’s, the error of the proposed method is lower. 
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Table 1 Analysis results of the wave with period of 6 s and 
height of 7.87 m.

Stokes theory This study
Error in KFSBC 1.42% 0
Error in DFSBC 0.37% 7.25×10-2%

Wavelength 64.52 m 64.8 m
Series order 5 3

6. Solution Method and Curve Fitting Results 

This study is based on a Fourier approximation. There are 
differences in numerical methods to determine the Fourier coefficients 
and the related parameters between Shin’s (2016) method and the 
other Fourier approximations (Dean, 1965; Chappeler, 1961; Chaplin, 
1979; Rienecker and Fenton, 1981; Fenton, 1988). The result from 
Shin (2016) is summarized for a closed-form solution in the following. 

The solution contains 5 unknown constants: 3 Fourier coefficients 
, the steepness , and the reference line . Two wave profiles 
from the KFSBC and the DFSBC were presented with implicit 
functions in Eqs. (6) and (8). Considering the dimensionless 
coordinate system, the two wave profiles should be even functions. 
The Fourier series of a periodic even function is presented as 

 
  

∞


cos in ≤x ≤. The coefficients are determined 

using the orthogonality of trigonometric functions in general. 
When  is an implicit function like Eqs. (6) and (8), the method is 

impossible. A method to solve the problem is to convert the series to a 
set of algebraic equations that are obtained when we calculate the 
series at some phases instead of all phases by replacing the infinite 

series with a truncated series: 
  




cos

  for m=1, ... , N. 

Because cos and  are known, we have N algebraic equations 
for calculating the coefficients, . Therefore, we have a set of N 
equations such that Eqs. (6) and (8) are equal to each other at N phases. 
In this study, N=3 was considered. Additionally, we have two 
equations: the wave height condition and water depth condition. As a 
result, we have 5 equations to determine the unknown constants. 

Assuming that 
 , 

 , and 
  are known 

values and applying the idea above to Eq. (6), we have a set of linear 
algebraic equations with regard to the three coefficients. From the set 
of equations, the Fourier coefficient  is determined as follows:




 (14)

where

≝
  


 




    


   (15)

and

≝


    




     (16)


  cosh






 




  cosh

The Fourier coefficient  is determined as follows:

 

 
  




 
  (17)

The Fourier coefficient  is determined as follows:

 


   


  (18)




   




    
 cosh

Applying the same idea to Eq. (8) and substituting Eqs. (14), (17), 
and (18) in Eq. (8), we have a set of three nonlinear equations with 
regard to , , and . From the wave height condition, we have the 
following:

  
 (19)

We also have an equation from the water depth condition, in which the 
still water line is the average of the wave profile during a wave period 
or over a wavelength. Because the horizontal axis of the conventional 
coordinate system is on the still water line, the reference line is 
represented as:

 

 
 



 (20)

Therefore, we have five nonlinear equations, which were solved by 
Newton’s method by Shin (2016). All the unknown constants are 
functions of the linear steepness , which is a known constant for a 
particular wave in the range of  ≤〈. They were calculated with a 
highly dense interval of the linear steepness, and the results were 
shown by Shin (2016). The constants are represented with Newton’s 
polynomials in this study. For the curve fitting, the divided differences 
method (Gerald and Wheatley, 2006) is considered. For  ≤, the 
steepness is presented as follows:

     (21)






  

where  is a Newton basis polynomial defined as 

≝
  

. For 〈〈, the steepness is:
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    (22)







  

where  

  

. The wave number is 

determined by Eq. (21) or (22) and   . For  ≤, the ratio of 
the trough depth to crest height is presented as follows:

≝ 

 (23)

   






  

For 〈〈, the ratio of the trough depth to crest height is presented 
as follows:

  
 (24)













For  ≤, the ratio of the elevation  at a phase of 30° to the crest 
height is presented as follows:

≝





  (25)

  




 

For 〈〈, the ratio of the elevation  at phase of 30° to the crest 
height is presented as follows:

   (26)






  




By using the definition in Eq. (23) and Eq. (19), we have: 

 

 (27)

Therefore, by substituting Eqs. (21) or (22) and (23) or (24) in Eq. 
(27), the crest elevation is determined. By using the definition in Eq. 

(23), we have:


 (28)

By substituting Eqs. (23) or (24) and (27) in Eq. (28), the trough 
elevation is determined. By using the definition in Eq. (25), we have: 


  (29)

By substituting Eqs. (25) or (26) and (27) in Eq. (29), the wave 
elevation at a phase of  = 30° is determined. The reference line is 
numerically calculated by applying Eq. (9) in Eq. (20). The reference 
line was also calculated with a highly dense interval of the linear 
steepness. The result is represented with Newton’s polynomials as 
follows: 






  (30)

For  ≤, the parameter  is presented as:

     (31)






  

For 〈〈, the parameter  is presented as:


 

 (32)

   






The dimensionless elevation is determined by Eq. (9), the reference 
line  is determined by Eq. (30), wave number is determined by Eq. 
(21) or Eq. (22) and then, substituting the three results in the definition 
of the dimensionless elevation,  , the wave profile is 
calculated as:

 

 (33)

 
, , and  are merely parameters to calculate the Fourier 
coefficients. The wave profile is calculated with Eqs. (9) and (33). This 
is one of the major differences between Shin’s (2016) theory and 
Fenton’s theory (Rienecker et al., 1981; Fenton 1988). 

7. Conclusions

The purpose of this study was to provide a closed-form solution for 
deep-water waves with error less than 1%. For this purpose, the result 
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from Shin (2016) was simplified. The major simplification is that all 
Fourier coefficients and all parameters are presented with Newton’s 
polynomials for a closed-form solution and engineering application. 
Therefore, a numerical procedure is not necessary for calculating the 
coefficients and the parameters any more. 

The required Fourier series order is N = 3 in this study, while more 
than 11 is required by Dean’s stream function theory (DNV, 2010b), 
and more than N = 64 is required by Fenton’s theory (Rienecker and 
Fenton, 1981). The series order of 5th-order Stokes theory is 5. 
Therefore, the required series order is dramatically reduced. The result 
has less error, is simpler, and gives greater water particle velocities and 
water particle accelerations than the 5th-order Stokes wave theory. 
Therefore, the Stokes wave theory is not conservative, and the 
proposed method is more suitable for offshore structure design.
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