DOI QR코드

DOI QR Code

Comparison of Acetaminophen Degradation Performance using Advanced Oxidation Process

고급산화공정을 이용한 아세트아미노펜 분해 성능 비교

  • 김동석 (대구가톨릭대학교 환경안전학전공) ;
  • 박영식 (대구대학교 자유전공학부)
  • Received : 2022.02.16
  • Accepted : 2022.04.05
  • Published : 2022.04.30

Abstract

This study investigated the treatment of acetaminophen in municipal wastewater by conventional ozonation, ozone-based advanced oxidation, ozone/UV, and the electro-peroxone process. The ozone/UV process and electro-peroxone process of electric power consumption increased 1.25 and 2.04 times, respectively, compared to the ozone process. The pseudo-steady OH radical concentration was the greatest in the electro-peroxone process and lowest in the ozone process. The specific energy consumption for TOC decomposition of the ozone/UV process and electro-peroxone process were 22.8% and 15.5% of the ozone process, respectively. Results suggest that it is advantageous in terms of degradation performance and energy consumption to use a combination of processes in municipal wastewater treatment, rather than an ozone process alone. In combination with the ozone process, the electrolysis process was found to be more advantageous than the UV process.

Keywords

Acknowledgement

이 결과물은 2021년도 대구가톨릭대학교 교내연구비 지원에 의한 것임

References

  1. Ali, R. R., Davood, N., Mohammad, R. S., Mohammad, T. S., Ghasem, A., 2018, A Combined advanced oxidation process: electrooxidation-ozonation for antibiotic ciprofloxacin removal from aqueous solution, J. Electroanal. Chem., 808, 82-89. https://doi.org/10.1016/j.jelechem.2017.11.067
  2. Bedner, M., MacCrehan, W. A., 2006, Transformation of acetaminophen by chlorination produces the toxicants 1,4-Benzoquinone and N-acetyl-p-benzoquinone imine, Environ. Sci. Technol., 40, 516-522. https://doi.org/10.1021/es0509073
  3. Fischbacher, A., von Sonntag, J., von Sonntag, C., Schmidt, T. C., 2013, The ·OH radical yield in the H2O2+O3 (peroxone) reaction, Environ. Sci. Technol., 47, 9959-9964. https://doi.org/10.1021/es402305r
  4. Frangos, P., Shen, W., Wang, H., Li, X., Yu, G., Deng, S., Huang, J., Wang, B., Wang, Y., 2016, Improvement of the degradation of pesticide deethylatrazine by combing UV photolysis with electrochemical generation of hydrogen peroxide, Chem. Eng. J., 291, 215-224. https://doi.org/10.1016/j.cej.2016.01.089
  5. Han, G. H., Hur, H. G., Kim, S. D., 2006, Ecotoxicological risk of pharmaceuticals from wastewater treatment plants in Korea: occurrence and toxicity to Daphniamagna, Environ. Toxicol. Chem., 2006, 25, 265-271. https://doi.org/10.1897/05-193R.1
  6. Igwegbe, C. A., Aniagor, C. O., Oba, S. N., Yap, P. S., Iwuchukwu, F. U., Liu, T., de Souza, E. C., Ighalo, J. C., 2021, Environmental protection by the adsorptive elimination of acetaminophen from water: a comprehensive review, J. Ind. Eng. Chem., 104, 117-135. https://doi.org/10.1016/j.jiec.2021.08.015
  7. Jo, S. J., Gang, H. Y., Lee, S. J., Bae, G. H., Lee, E. J., Han, K. S., Kim, S. J., Lee, S. W., 2020, Continuous control of Acetaminophen poisoning after implementation of regulation for ease access of Acetaminophen: cohort study from emergency department based in-depth injury surveillance, J. Korean Soc. Clin. Toxicol., 18, 57-65. https://doi.org/10.22537/JKSCT.2020.18.2.57
  8. Kim, D. S., Park, Y. S., 2007, Color and COD removal of Rhodamine B using ozone, photocatalyst and ozone-complex process, J. Korean Soc. Environ. Eng., 29, 662-669.
  9. Kim, D. S., Park, Y. S., 2011, Effect of disinfection process combination on E. coli deactivation and oxidants generation, J. Environ. Sci., 20, 891-898. https://doi.org/10.3321/j.issn:1001-0742.2008.07.019
  10. Kim, D. S., Park, Y. S., 2017, Basic principles and calculations in environmental engineering, Donghwa, Pub., Kyunggi,, 197-198.
  11. Kim, I. H., 2018a, Removal of residual pharmaceuticals in a secondary effluent from a sewage treatment plant by ozonation, J. Korean Soc. Environ. Eng., 40, 487-494. https://doi.org/10.4491/ksee.2018.40.12.487
  12. Kim, I. H., Tanaka, H., 2010, Applicability of UV and UV/H2O2 processes in the control of pharmaceuticals and personal care products and microbiological safety for water reuse, J. Korean Soc. Environ. Eng., 32, 722-729.
  13. Kim, U. Y., 2018b, Degradation of the acetaminophen by electro-peroxone process, Master's Dissertation, Daegu Catholic University, Gyeongbuk, Korea.
  14. Kim, Y. H., Choi, K. H., Jung, J. Y., Park, S. J., Kim, P. G., Park, J. I., 2007, Aquatic toxicity of acetaminophen, carbamazepine, cimetidine, diltiazem and six major sulfonamides, and their potential ecological risks in Korea, Environ. Int., 33, 370-375. https://doi.org/10.1016/j.envint.2006.11.017
  15. Kishimoto, N., Morita, Y., Tsuno, H., Oomura, T., Mizutani, H., 2005, Advanced oxidation effect of ozonation combined with electrolysis, Wat. Res., 39, 4661-4672. https://doi.org/10.1016/j.watres.2005.09.001
  16. Kohantorabi, M., Moussavi, G., Oulego, P., Giannakis, S., 2022, Heterogeneous catalytic ozonation and peroxone-mediated removal of Acetaminophen using natural and modified hematite-rich soil, as efficient and environmentally friendly catalysts, Appl. Catal. B., 301, 1-15.
  17. Koulini, G. V., Laiju, A. R., Ramesh, S. T., Gandhimathi, R., Nidheesh, P. V., 2022, Effective degradation of azo dye from textile wastewater by electro-peroxone process, Chemosphere, 289, 1-8.
  18. Li, X., Wang, Y., Zhao, J., Wang, H., Wang, B., Huang, J., Deng, S., Yu, G., 2015, Electro-peroxone treatment of the antidepressant venlafaxine: operational parameters and mechanism, J. Hazard. Mater., 300, 298-306. https://doi.org/10.1016/j.jhazmat.2015.07.004
  19. Moctezuma, E., Leyva, E., Aguilar, C. A., Luna, R. A., Montalvo, C., 2012, Photocatalytic degradation of paracetamol: intermediates and total reaction mechanism, J. Hazard. Mater., 243, 130-138. https://doi.org/10.1016/j.jhazmat.2012.10.010
  20. Mohapatra, S., Huang, C. H., Suparna, M., Lokesh, P. P., 2016, Occurrence and fate of pharmaceuticals in WWTPs in India and comparison with a similar study in the United States, Chemosphere, 159, 526-535. https://doi.org/10.1016/j.chemosphere.2016.06.047
  21. Natarajan, R., Kumar, M. A., Vaidyanathan, V. K., 2021, Synthesis and characterization of rhamnolipid based chitosan magnetic nanosorbents for the removal of acetaminophen from aqueous solution, Chemosphere, 288, 1-10.
  22. Park, Y. S., Ahn, K. H., 2001, Effect of coagulation, ozone and UV post-process on COD and color removal of textile wastewter, Kor. J. Env. Hith. Soc., 27, 93-98.
  23. Rosenfeldt, J. E., Linden, G. K., Canonica, S., Gunten, U., 2006, Comparison of the efficiency of OH radical formation during ozonation and the advanced oxidation processes O3/H2O2 and UV/H2O2, Wat. Res., 40, 3695-3704. https://doi.org/10.1016/j.watres.2006.09.008
  24. Sithep, S., Phattarapattamawong, S., 2017, Kinetic removal of haloacetonitrile precursors by photo-based advanced oxidation processes (UV/H2O2, UV/O3 and UV/H2O2/O3), Chemosphere, 176, 25-31. https://doi.org/10.1016/j.chemosphere.2017.02.107
  25. Wang, H., Bakheet, B., Yuan, S., Li, X., Yu, G., Murayama, S., Wang, Y., 2015a, Kinetics and energy efficiency for the degradation of 1,4-dioxane by electro-peroxone process, J. Hazard. Mater., 294, 90-98. https://doi.org/10.1016/j.jhazmat.2015.03.058
  26. Wang, H., Yuan, S., Zhan, J., Wang, Y., Yu, G., Deng, S., Jun, H., Wang, B., 2015b, Mechanisms of enhanced total organic carbon elimination from oxalic acid solutions by electro-peroxone process, Wat. Res., 80, 20-29. https://doi.org/10.1016/j.watres.2015.05.024
  27. Witte, D. B. Dewulf, J., Demeester, K., Langenhove, V. H., 2009, Ozonation and advanced oxidation by the peroxone process of ciprofloxacin in water, J. Hazard. Mater., 161, 701-708. https://doi.org/10.1016/j.jhazmat.2008.04.021
  28. Xu, Y., Yuan, Z, Ni, B. J., 2016, Biotransformation of pharmaceuticals by ammonia oxidizing bacteria in wastewater treatment processes, Sci. Total Environ. 566/567, 796-805. https://doi.org/10.1016/j.scitotenv.2016.05.118
  29. Zavala, M. A. L., Vega, D. A., Vega, J. M. A., Jerez, O. F. C., Hern andez, R. A. C., 2020, Electrochemical oxidation of acetaminophen and its transformation products in surface water: effect of pH and current density, Heliyon, 6, 1-11.
  30. Zhang, G., Sun, Y., Zhang, C., Yu, Z., 2017, Decomposition of acetaminophen in water by a gas phase dielectric barrier discharge plasma combined with TiO2-rGO nanocomposite: mechanism and degradation pathway, J. Hazard. Mater., 323, 719-729. https://doi.org/10.1016/j.jhazmat.2016.10.008