DOI QR코드

DOI QR Code

다양한 적층을 갖는 CFRP 적층판의 인장강도 예측

Estimating Tensile Strengths of CFRP Laminates Having Various Stacking Sequences

  • Park, Chan Yik (Aerospace Technology Research Institute, Agency for Defense Development) ;
  • Lee, Myung-Keon (Aerospace Technology Research Institute, Agency for Defense Development) ;
  • Kim, Sang-Yong (Aerospace Technology Research Institute, Agency for Defense Development) ;
  • Jang, Se-Yong (Aerospace Technology Research Institute, Agency for Defense Development)
  • 투고 : 2022.01.27
  • 심사 : 2022.03.29
  • 발행 : 2022.05.01

초록

본 논문에서는 14개의 다른 적층을 갖는 CFRP 적층판의 강도를 비선형 수치해석으로 계산하고 시험 결과와 비교하였다. 복합재 적층판 쿠폰은 일방향 테이프로 만들어진 프리프레그를 오토클레이브에서 경화하여 제작하였다. 라미나 시험으로 획득한 메트릭스의 비선형 특성을 해석에 고려하였다. Hashin 파손조건과 점진적 손상모델을 사용하여 비선형 유한요소 해석을 수행하였다. 비교 결과 본 논문의 접근 방법이 다양한 적층을 갖고, 손상이 없는 CFRP 적층판의 인장강도를 예측할 수 있음을 보여주었다. 그러나 구멍이 있는 적층판 시편의 강도 예측에는 부적합하였다.

This paper presents nonlinear numerical analysis results which were compared with the tested tensile strengths of CFRP(Carbon Fiber Reinforced Plastic) laminates with 14 different stacking sequences. The composite laminate coupons were cured under an autoclave pressure using resin-impregnated unidirectional tapes. The nonlinearity of the matrix was considered for the analysis, which was obtained from lamina tests. The Hashin failure criteria and progressive failure analysis were used for the nonlinear finite element analysis. The comparison results show that the current approach is acceptable to predict the tensile strengths of the CFRP laminate coupons with various stacking sequences and no damage. However, it is not acceptable to predict the tensile strengths of the laminate specimens with a center hole.

키워드

참고문헌

  1. MIL-HDBK-17-3F, Composite Materials Handbook, Volume 3. Polymer Matrix Composite Materials Usage, Design, and Analysis, Department of Defense, 2002.
  2. ASTM D3039/D3039M-17, Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, ASTM.
  3. Waddoups, M. E., Advanced Composite Material Mechanics for the Design and Stress Analyst, General Dynamics, Fort Worth Division Report FM-4763, 1967.
  4. Jenkins, C. F., Report on Materials of Construction Used in Aircraft and Aircraft Engines, Great Britain Aeronautical Research Committee, 1920.
  5. Tsai, S. W. and Wu, E. M., "A General Theory of Strength for Anisotropic Materials," Journal of Composite Materials, Vol. 5, 1971, pp. 58~80. https://doi.org/10.1177/002199837100500106
  6. Hashin, Z., "Failure Criteria for Unidirectional Fiber Composites," Journal of Applied Mechanics, Vol. 47, 1980, pp. 329~334. https://doi.org/10.1115/1.3153664
  7. Puck, A. and Schurmann, H., "Failure Analysis of FRP Laminates by Means of Physically Based Phenomenological Models," Composites Science and Technology, Vol. 62, 2002, pp. 1633~1662. https://doi.org/10.1016/S0266-3538(01)00208-1
  8. Davila, C. G. and Camanho, P. P., Failure Criteria for FRP Laminates in Plane Stress, NASA/TM-2003-212663, 2003.
  9. Daniel, I. M., Daniel, S. M. and Fenner, J. S., "A new yield and failure theory for composite materials under static and dynamic loading," International Journal of Solids and Structures, Vol. 148-149, 2018, pp. 79~93. https://doi.org/10.1016/j.ijsolstr.2017.08.036
  10. Furtado, C., Catalanotti, G., Arteiro, A., Gray, P. J., Wardle, B. L. and Camanho, P. P., "Simulation of Failure in Laminated Polymer Composites; Building-Block Validation," Composite Structures, Vol. 226, 2019.
  11. Park, K.-J., Kang, H.-J., Shin, S. J., Choi, I.-H., Kim, M. K. and Kim, S.-J, "Strength Prediction on Composite Laminates Including Material Nonlinearity and Continuum Damage Mechanics," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 42, No. 11, 2014, pp. 927~936. https://doi.org/10.5139/JKSAS.2014.42.11.927
  12. Park, K.-J., Nam, K.-M., Jung, C.-H., Choi, I.-H., Shin, S. J. and Kim, S.-J, "Continuum Damage Mechanics based Multi-Scale Model Development for CFRP Composite Laminates," Proceeding of The Korean Society for Aeronautical and Space Sciences Spring Conference, November 2015, pp. 322~325.
  13. Digimat 2021.3, VA User's Guide, MSC Software, 2021.
  14. Aboudi, J., Arnold, S. M. and Bednarcyk, B. A., Micromechanics of Composite Materials, Elsevier, 2013, pp. 118~121.
  15. ASTM D5766/D5766M-11, Standard Test Method for Open-Hole Tensile Strength of Polymer Matrix Composite Laminates, ASTM.
  16. Matzenmiller, A., Lubliner, J. and Taylor, R. L., "A constitutive model for anisotropic damage in fiber composites," Mechanics of Materials, Vol 20, 1995, pp. 125~152. https://doi.org/10.1016/0167-6636(94)00053-0
  17. Marc 2020, Theory and User Information, MSC Software, 2020.
  18. Turon, A., Camanho, P. P., Costa, J. and Davila, C. G., "A Damage Model for the Simulation of Delamination in Advanced Composites under Variable-Mode Loading," Mechanics of Materials, Vol. 38, 2006, pp. 1072~1089. https://doi.org/10.1016/j.mechmat.2005.10.003
  19. Benzeggagh, M. L. and Kenane, M., "Measurement of Mixed Mode Delamination Fracture Toughness of Unidirectional Glass/Epoxy Composites with Mixed-Mode Bending Apparatus," Composite Science Technology, Vol. 49, 1996, pp. 439~449. https://doi.org/10.1016/0266-3538(96)00005-X