DOI QR코드

DOI QR Code

초임계 환경으로 분사되는 액체 연료 제트의 분사 거동 특성

Characteristics of Liquid Fuel Jet Injected into Supercritical Environment

  • An, Jeongwoo (Department of Smart Air Mobility, Korea Aerospace University) ;
  • Choi, Myeung Hwan (Department of Smart Air Mobility, Korea Aerospace University) ;
  • Lee, Jun (School of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Koo, Jaye (School of Aerospace and Mechanical Engineering, Korea Aerospace University)
  • 투고 : 2022.01.07
  • 심사 : 2022.04.03
  • 발행 : 2022.05.01

초록

쉐도우그래프(Shadowgraph) 기법을 통해 케로신의 대체 물질인 데칸/메틸사이클로헥산 혼합연료를 사용하는 단일 제트(jet)를 초임계 환경으로 분사하여 제트의 거동을 가시화하였다. Tr = 0.484인 연료 제트의 분사 차압 ∆P는 0.5 MPa로 일정하게 유지하였고 혼합연료의 임계점 이상에서 실험을 진행하였으며 챔버 내부 환산온도 Tr(=T/Tc)를 1.00~1.23, 환산압력 Pr(=P/Pc)을 1.00, 1.38로 변화하여 실험결과를 분석하였다. 초임계 환경으로 분사되는 제트의 밀도감소 지표로써 후처리 된 제트 이미지의 밝기 강도를 챔버 내부 온도와 압력을 변화시켜 관찰하였다. 챔버 내부 온도가 상승할 때 제트의 밝기 강도 감소 폭이 커지는 것을 확인하였으며, 동일 온도일 때 챔버 내부 압력이 높을 경우 제트의 밝기 강도 감소가 지연되는 것을 확인하였다. 챔버 내부 압력이 높을 경우 연료의 유사 임계온도(pseudocritical temperature)가 증가하고 연료 제트의 밀도감소에 필요한 온도가 상승하여 밝기 강도 변화가 지연되는 근거로 판단하였다.

The single jet of decane/methylcyclohexane mixed fuel that is surrogate for kerosene was injected into supercritical environment and visualized using shadowgraph technique. The injection pressure drop of the fuel jet of Tr = 0.484 was kept constant at 0.5 MPa and the experiment was conducted above the critical point of the mixed fuel, and the reduced temperatures of the chamber was changed from 1.00 to 1.23, and the reduced pressures was 1.00 and 1.38. As an index for reducing the density of jets sprayed into the supercritical environment, the brightness intensity of the post-processed jet image was observed with the internal temperature and pressure of the chamber. It was confirmed that the decrease in the brightness intensity of the jet when the temperature inside the chamber increased, and when the pressure inside the chamber was higher at the same temperature, the decrease in the brightness intensity of the jet was delayed. When the pressure inside the chamber is high, it is thought that the change in brightness intensity is delayed due to the increase in the pseudo-critical temperature of the fuel and the increase in the temperature required to reduce the density of the fuel jet.

키워드

과제정보

본 연구는 개인기초연구지원사업(2016R1D1A1 B04934852)의 지원 및 2020년 한국연구재단 BK21 Four(과제번호 5199990714521)의 지원을 받아 작성하였습니다.

참고문헌

  1. Yang, V., Nienchuan, N. and Shuen, J. S., "Vaporization of liquid oxygen (LOX) droplets in supercritical hydrogen environments," Combustion Science and Technology, Vol. 97, Issue 4-6, 1994, pp. 247~270. https://doi.org/10.1080/00102209408935380
  2. Xia, J., Huang, Z., Zhang, L., Zhang, Q., Zheng, L., Liu, R., Ju, D. and Lu, X., "Experimental comparisons on injection and atomization characteristics of diesel and its six-component surrogate under different critical conditions of marine en gine," Energy Conversion and Management, Vol. 205, 2020, 112397. https://doi.org/10.1016/j.enconman.2019.112397
  3. Xia, J., Zhang, Q., He, Z., Wang, J., Liu, R., Qian, Y., Ju, D. and Lu, X., "Experimental study on diesel's twin injection and spray impingement characteristics under marine engine's conditions," Fuel, Vol. 302, 2021, 121133. https://doi.org/10.1016/j.fuel.2021.121133
  4. Banuti, D. and Hannemann, K., "The absence of a dense potential core in supercritical Injection: A thermal break-up mechanism," Physics of Fluids, Vol. 28 No. 3, 2016, 035103. https://doi.org/10.1063/1.4943038
  5. Banuti, D. and Hannemann, K., "Supercritical Pseudo-Boiling and its Relevance for Transcritical Injection," 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 2014, 3571.
  6. Siebers, D. L., "Scaling liquid-phase fuel penetration in diesel sprays based on mixing-limited vaporization," SAE transactions, 1999, pp. 703~728.
  7. Riess, S., Rezaei, J., Weiss, L., Peter, A. and Wensing, M., "Phase change in fuel sprays at diesel engine ambient conditions: Modeling and experimental validation," The Journal of Supercritical Fluids, Vol. 173, 2021, 105224. https://doi.org/10.1016/j.supflu.2021.105224
  8. Rezaei, J., Riess, S. and Wensing, M., "Phase change in fuel sprays at diesel engine ambient conditions: Impact of fuel physical properties," The Journal of Supercritical Fluids, Vol. 170, 2021, 105130. https://doi.org/10.1016/j.supflu.2020.105130
  9. Xu, K. and Meng, H., "Analyses of surrogate models for calculating thermophysical properties of aviation kerosene RP-3 at supercritical pressures," Science China Technological Sciences, 2015, Vol. 58, No. 3, 2015, pp. 510~518. https://doi.org/10.1007/s11431-014-5752-5
  10. Roy, A., Segal, C. and Joly, C., "Spreading angle and core length analysis of supercritical jets," AIAA Journal, Vol. 51, No. 8, 2013, pp. 2009~2014. https://doi.org/10.2514/1.J052415