DOI QR코드

DOI QR Code

공침법을 통하여 합성된 코어-쉘 구조를 가지는 하이 니켈 양극 소재 안정화

Stabilization of High Nickel Cathode Materials with Core-Shell Structure via Co-precipitation Method

  • 김민정 (충남대학교 신소재공학과) ;
  • 홍순현 (충남대학교 신소재공학과) ;
  • 전형권 (충남대학교 신소재공학과) ;
  • 구자훈 (충남대학교 신소재공학과) ;
  • 이희상 (충남대학교 신소재공학과) ;
  • 최규석 (구미전자정보기술원) ;
  • 김천중 (충남대학교 신소재공학과)
  • 투고 : 2022.04.14
  • 심사 : 2022.04.18
  • 발행 : 2022.04.27

초록

The capacity of high nickel Li(NixCoyMn1-x-y)O2 (NCM, x ≥ 0.8) cathodes is known to rapidly decline, a serious problem that needs to be solved in a timely manner. It was reported that cathode materials with the {010} plane exposed toward the outside, i.e., a radial structure, can provide facile Li+ diffusion paths and stress buffer during repeated cycles. In addition, cathodes with a core-shell composition gradient are of great interest. For example, a stable surface structure can be achieved using relatively low nickel content on the surface. In this study, precursors of the high-nickel NCM were synthesized by coprecipitation in ambient atmosphere. Then, a transition metal solution for coprecipitation was replaced with a low nickel content and the coprecipitation reaction proceeded for the desired time. The electrochemical analysis of the core-shell cathode showed a capacity retention of 94 % after 100 cycles, compared to the initial discharge capacity of 184.74 mA h/g. The rate capability test also confirmed that the core-shell cathode had enhanced kinetics during charging and discharging at 1 A/g.

키워드

과제정보

This study was funded by the government (Ministry of Trade, Industry, and Energy) and supported by the Materials/Parts Technology Development Program of the Korea Evaluation Institute of Industrial Technology (20011287).

참고문헌

  1. S. Schweidler, L. D. Biasi, G. Garcia, A. Mazilkin, P. Hartmann, T. Brezesinski and J. Janek, ACS Appl. Energy Mater., 2, 7375 (2019). https://doi.org/10.1021/acsaem.9b01354
  2. S. Y. Kim, S.-H. Choi, E. J. Lee and J.-S. Kim, J. Korean Electrochem. Soc., 20, 67 (2017).
  3. A. O. Kondrakov, H. Gesswein, K. Galdina, L. D. Biasi, V. Meded, E. O. Filatova, G. Schumacher, W. Wenzel, P. Hartmann, T. Brezesinski and J. Janek, J. Phys. Chem. C, 121, 24381 (2017). https://doi.org/10.1021/acs.jpcc.7b06598
  4. F. T. Geldasa, M. A. Kebede, M. W. Shura and F. G. Hone, RSC Adv., 12, 5891 (2022). https://doi.org/10.1039/D1RA08401A
  5. S. M. Na, H. G. Park, S. W. Kim, H. H. Cho and K. Park, KIC News, 23, 3 (2020).
  6. Q. Guo, J. Huang, Z. Liang, H. Potapenko, M. Zhou, X. Tang and S. Zhong, New J. Chem., 45, 3652 (2021). https://doi.org/10.1039/D0NJ05914E
  7. Q. Ran, H. Zhao, Y. Hu, Q. Shen, W. Liu, J. Liu, X. Shu, M. Zhang, S. Liu, M. Tan, H. Li and X.Liu, Electrochim. Acta, 289, 82 (2018). https://doi.org/10.1016/j.electacta.2018.08.091
  8. G.-W. Yoo, B.-C. Jang and J.-T. Son, Ceram. Int., 41, 1913 (2015). https://doi.org/10.1016/j.ceramint.2014.09.077
  9. S. D. Darma, M. Knapp, A. Senyshyn, M. Heere, A. Missyul, L. Simonelli, J. R. Binder, S. Indris and H. Ehrenberg, Nano Energy, 78, 105231 (2020). https://doi.org/10.1016/j.nanoen.2020.105231
  10. D.-W. Jun, C. S. Yoon, U.-H. Kim, Y.-K. Sun, Chem. Mater., 29, 5048 (2017). https://doi.org/10.1021/acs.chemmater.7b01425
  11. H. Yang, H. H. Wu, M. Ge, L. Li, Y. Yuan, Q. Yao, J. Chen, L. Xia, J. Zheng, Z. Chen, J. Duan, K. Kisslinger, X. C. Zeng, W. K. Lee, Q. Zhang and J. Lu, Adv. Funct. Mater., 29, 1808825 (2019). https://doi.org/10.1002/adfm.201808825
  12. F. Wang, J. Bai, Batteries and Supercaps, 5, e202100382 (2022).
  13. H. Konishi, M. Yoshikawa and T. Hirano, J. Power Sources, 244, 23 (2013). https://doi.org/10.1016/j.jpowsour.2013.05.004
  14. X. Zheng, X. Li, Z. Huang, B. Zhang, Z. Wang, H. Guo and Z. Yang, J. Alloys Compd., 644, 607 (2015). https://doi.org/10.1016/j.jallcom.2015.04.173
  15. W. Choi, S.-R. Park and C. H. Kang, J. Korean Powder Metall. Inst., 23, 136 (2016). https://doi.org/10.4150/KPMI.2016.23.2.136
  16. Y. Liu, W. Yao, C. Lei, Q. Zhang, S. Zhong and Z. Yan, J. Electrochem. Soc., 166, A1300 (2019). https://doi.org/10.1149/2.0151908jes
  17. J. Kim, H. Lee, H. Cha, M. Yoon, M. Park and J. Cho, Adv. Energy Mater., 8, 1702028 (2018). https://doi.org/10.1002/aenm.201702028
  18. S. Park, H. Ku, K.-J. Lee, J. H. Song, S. Kim, J. Sohn and K. Kwon, J. Korean Inst. Resources Recycling, 24, 9 (2015). https://doi.org/10.7844/KIRR.2015.24.6.9
  19. A. O. Kondrakov, A. Schmidt, J. Xu, H. Gesswein, R. Monig, P. Hartmann, H. Sommer, T. Brezesinski and J. Janek, J. Phys. Chem. C, 121, 3286 (2017). https://doi.org/10.1021/acs.jpcc.6b12885
  20. M. Oljaca, B. Blizanac, A. D. Pasquier, Y. Sun, R. Bontchev, A. Suszko, R. Wall and K. Koehlert, J. Power Sources, 248, 729 (2014). https://doi.org/10.1016/j.jpowsour.2013.09.102