DOI QR코드

DOI QR Code

Characteristics and Quality Control of Precipitable Water Vapor Measured by G-band (183 GHz) Water Vapor Radiometer

G-band (183 GHz) 수증기 라디오미터의 가강수량 특성과 품질 관리

  • Kim, Min-Seong (Convergence Meteorological Research Department, National Institute of Meteorological Sciences) ;
  • Koo, Tae-Young (Convergence Meteorological Research Department, National Institute of Meteorological Sciences) ;
  • Kim, Ji-Hyoung (Convergence Meteorological Research Department, National Institute of Meteorological Sciences) ;
  • Jung, Sueng-Pil (Convergence Meteorological Research Department, National Institute of Meteorological Sciences) ;
  • Kim, Bu-Yo (Convergence Meteorological Research Department, National Institute of Meteorological Sciences) ;
  • Kwon, Byung Hyuk (Department of Environmental Atmospheric Sciences, Pukyong National University) ;
  • Lee, Kwangjae (Convergence Meteorological Research Department, National Institute of Meteorological Sciences) ;
  • Kang, Myeonghun (Convergence Meteorological Research Department, National Institute of Meteorological Sciences) ;
  • Yang, Jiwhi (Convergence Meteorological Research Department, National Institute of Meteorological Sciences) ;
  • Lee, ChulKyu (Convergence Meteorological Research Department, National Institute of Meteorological Sciences)
  • 김민성 (국립기상과학원 융합기술연구부) ;
  • 구태영 (국립기상과학원 융합기술연구부) ;
  • 김지형 (국립기상과학원 융합기술연구부) ;
  • 정승필 (국립기상과학원 융합기술연구부) ;
  • 김부요 (국립기상과학원 융합기술연구부) ;
  • 권병혁 (부경대학교 환경대기과학과) ;
  • 이광재 (국립기상과학원 융합기술연구부) ;
  • 강명훈 (국립기상과학원 융합기술연구부) ;
  • 양지휘 (국립기상과학원 융합기술연구부) ;
  • 이철규 (국립기상과학원 융합기술연구부)
  • Received : 2021.10.11
  • Accepted : 2021.12.10
  • Published : 2022.04.30

Abstract

Quality control methods for the first G-band vapor radiometer (GVR) mounted on a weather aircraft in Korea were developed using the GVR Precipitable Water Vapor (PWV). The aircraft attitude information (degree of pitch and roll) was applied to quality control to select the shortest vertical path of the GVR beam. In addition, quality control was applied to remove a GVR PWV ≥20 mm. It was found that the difference between the warm load average power and sky load average power converged to near 0 when the GVR PWV increased to 20 mm or higher. This could be due to the high brightness temperature of the substratus and mesoclouds, which was confirmed by the Communication, Ocean and Meteorological Satellite (COMS) data (cloud type, cloud top height, and cloud amount), cloud combination probe (CCP), and precipitation imaging probe (PIP). The GVR PWV before and after the application of quality control on a cloudy day was quantitatively compared with that of a local data assimilation and prediction system (LDAPS). The Root Mean Square Difference (RMSD) decreased from 2.9 to 1.8 mm and the RMSD with Korea Local Analysis and Precipitation System (KLAPS) decreased from 5.4 to 4.3 mm, showing improved accuracy. In addition, the quality control effectiveness of GVR PWV suggested in this study was verified through comparison with the COMS PWV by using the GVR PWV applied with quality control and the dropsonde PWV.

국내에서 처음으로 도입한 기상 항공기에 탑재한 G-band 수증기 라디오미터(GVR) 관측으로 산출된 가강수량의 품질 관리 방법을 제안하였다. GVR 빔의 연직 최단 경로 자료만 사용하기 위해 기상 항공기의 자세 정보(pitch와 roll 각도)를 활용하였고, GVR 가강수량이 20 mm 이상의 자료를 제거하는 방법을 품질 관리에 적용하였다. GVR 가강수량이 20 mm 이상으로 증가할 때, 웜로드(Warm load) 평균 전력과 스카이로드(Sky load) 평균 전력의 차이가 0에 가까이 수렴하는 특성을 확인하였고, 이는 COMS (Communication, Ocean and Meteorological Satellite)의 운형, 운정고도, 운량자료와 구름통합관측기기(CCP), 강수입자 측정기(PIP)로 측정된 강수 및 구름 입자 크기로 확인한 하층운과 중층운에 의한 높은 밝기온도 때문으로 판단된다. 구름 많은 날의 품질 관리 적용 전후의 GVR 가강수량을 LDAPS (Local Data Assimilation and Prediction System) 가강수량과 정량적으로 비교하였는데 RMSD (Root Mean Square Difference)는 2.9 mm에서 1.8 mm로 감소하였고, KLAPS (Korea Local Analysis and Prediction System)와의 RMSD는 5.4 mm에서 4.3 mm로 감소하여 향상된 정확도를 보였다. 또한 품질 관리를 적용한 GVR 가강수량과 드롭존데 가강수량 관측 자료을 활용하여 COMS 가강수량과도 정량적으로 비교평가함으로써 본 연구에서 제안한 GVR 가강수량의 품질 관리 방법의 유효성을 확인하였다.

Keywords

Acknowledgement

이 연구는 기상청 국립기상과학원 「기상항공기 활용기술개발연구」(KMA2018-00222)의 지원으로 수행되었습니다. 세심한 조언을 해주신 익명의 심사위원께 감사드립니다.

References

  1. Back, J. J., and Choi, M., 2012, Availability of land surface temperature from the COMS in the Korea Peninsula, Journal of Korea Water Resources Association, 45(8), 755-765. https://doi.org/10.3741/JKWRA.2012.45.8.755
  2. Byon, J. Y., Hong, S.-O., Park, Y.-S., and Kim, Y.-H., 2021, Evaluation of the Urban Heat Island Intensity in Seoul Predicted from KMA Local Analysis and Prediction System, J. Korean Earth Sci. Soc., 42(2), 135-148. https://doi.org/10.5467/JKESS.2021.42.2.135
  3. Cadeddu, M. P., Liliegren, and Pazmany, A., 2007, Measurements and Retrievals from a New 183-GHz Water Vapor Radiometer in the Arctic, IEEE, 45(7), 2207-2215.
  4. Cha, J. W., Jung, W. S., Chae, S. H. Ko, A.-R., Ro, Y. H., Chang, K.-H., Seo, S. K., Ha, J.-C., Park, D. O., Hwang, H. J., Kim, M. H., Kim, K. E., and Ku, J. M., 2019, Analysis of Results and Techniques about Precipitation Enhancement by Aircraft Seeding in Korea, Atmosphere, 29(4), 481-499. (in Korean) https://doi.org/10.14191/Atmos.2019.29.4.481
  5. Ha, J. H., Park, K.-D., Chang, K.-H., and Yang, H.-Y., 2007, Precision Validation of GPS Precipitable Water Vapor via Comparison with MWR Measurements, Atmosphere, 17(3), 291-298. (in Korean)
  6. Iassamen, A., Sauvageot, and Jeannin, N., 2009, Distribution of tropospheric water vapor in clear and cloudy conditions from microwave radiometric profiling, J. Appl. Meteor. Climatol. 48, 600-615. https://doi.org/10.1175/2008JAMC1916.1
  7. Jang, M., You, C.-H., Jee, J.-B., Park, S.-H., Kim, S.-I., and Choi, Y.-J., 2016, Three-dimensional Analysis of Heavy Rainfall Using KLAPS Re-analysis Data, Atmosphere, 26(1), 97-109. (in Korean) https://doi.org/10.14191/Atmos.2016.26.1.097
  8. Jung, S. P., Lee, C. K., Kim, J. H., Yang, H. J., Yun, J. H., Ko, H. J., Hong, S. E., and Kim, S. B., 2020, Thermodynamic Characteristics of Snowfall Clouds using Dropsonde Data During ICE-POP 2018, Atmosphere, 30(1), 31-46. (in Korean) https://doi.org/10.14191/Atmos.2020.30.1.031
  9. Kang, M. S., Lim, Y.-K., Cho, C. B., Kim, K. R., Park, J. S., and Kim, B. J., 2015, The Sensitivity Analysis of Initial Condition and Data Assimilation for a Fog Event using the Mesoscale Meteorological Model, J. Korean Earth Sci. Soc., 36(6), 567-579. (in Korean) https://doi.org/10.5467/JKESS.2015.36.6.567
  10. Kim, B. Y., Cha, J. W., Ko, A.-R., Jung, W. S., and Ha, J.-C., 2020, Analysis of the occurrence frequency of seedable clouds on the Korean Peninsula for precipitation enhancement experiments, Remote Sensing, 12(9), 1487. https://doi.org/10.3390/rs12091487
  11. Kim, J. S., and Bae, T.-S., 2015, Comparative Analysis of GNSS Precipitable Water Vapor and Meteorological Factors, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 33(4), 317-324. https://doi.org/10.7848/KSGPC.2015.33.4.317
  12. Kwon, H.-N., Kang, J.-H., and Kwon, I.-H., 2018, Bias Correction for Aircraft Temperature Observation Part I: Analysis of Temperature Bias Characteristics by Comparison with Sonde Observation, Atmosphere, 28(4), 357-367. (in Korean) https://doi.org/10.14191/ATMOS.2018.28.4.357
  13. Li, S. L., Goo, T.-Y., Moon, H. J., Labzovskii, L., Kenea, S. T., Oh, Y.-S., Lee, H. Y., and Byun, Y.-H., 2019, Airborne In-situ Measurement of CO2 and CH4 in Korea: Case Study of Vertical Distribution Measured at Anmyeon-do in Winter, Atmosphere, 29(5), 511-523. (in Korean) https://doi.org/10.14191/ATMOS.2019.29.5.511
  14. Martin, C., 2009, Atmospheric Sounding Processing Environment User manual. National Center for Atmospheric Research, Colorado, USA, 59 p.
  15. Nam, J. Y., and Song, D. S., 2019, Retrieval Biases Analysis on Estimation of GNSS Precipitable Water Vapor by Tropospheric Zenith Hydrostatic Models, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 37(4), 233-242. (in Korean) https://doi.org/10.7848/KSGPC.2019.37.4.233
  16. NMSC, 2012, Total Precipitable Water (TPW) Algorithm theoretical basis document, National Meteorology Satellite Center, NMSC/SCI/ATBD/TPW, Issue 1, rev.0, 31 p.
  17. Pazmany, A., 2007, A compact 183-GHz Radiometer for Water Vapor and Liquid Water Sensing, IEEE, 45(7), 2202-2206.
  18. Pazmany, A., and Wolde, M., 2008, A compact Airborne G-band (183-GHz) Water Vapor Radiometer and Retrievals of Liquid Cloud Parameters from Coincident Radiometer and Millimeter Radar Measurements, Microwave Radiometry and Remote Sensing of the Environment, IEEE, 45(7), 1-4, doi: 10.1109/MICRAD.2008.4579473.
  19. Pazmany, A., 2016, Airborne GVR Installation and Operation Manual, Massachusetts, USA, 14 p.
  20. Soisuvarn, S., Jelenak, Z., Chang, P. S., Alsweiss, S. O., and Zhu, Q., 2012, CMOD5.H-A High wind geophysical Model Function for C-band vertically polarized satellite scatterometer Measurements, IEEE, 51(6), 3744-3760.
  21. Stith, J. L., Baumgardner, D., Haggerty, J., Hardesty, R. M., Lee, W.-C., Lenschow, D., Pilewskie, P., Smith, P. L., Steiner, M., and Vomel, H., 2018, 100 Years of progress in atmospheric observing systems, Meteorological Monographs, 59, 2.1-2.55. https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0006.1
  22. Stow, J. P., Bourassa, M. A., and Holbach, H. M., 2020, Analyzing Gaps in Hurricane Rain Coverage to Inform Future Satellite Proposals, Remote sensing, 12(17), 2673. https://doi.org/10.3390/rs12172673
  23. Wang, Z., French, J., Vail, G., Wechsler, P., Haimov, S., Rodi, A., Deng, M., Leon, D., Snider, J., Peng, L., and Pazmany, A. L., 2012, Single Aircraft Integration of Remote sensing and In situ Sampling for the cloudy of Cloud Microphysics and Dynamics, Bull. Amer. Meteor. Soc., 93, 653-668. https://doi.org/10.1175/BAMS-D-11-00044.1
  24. Yoo, C. S., Shin, C.-K., and Yoon, Y.-N., 2004, Estimation and Analysis of precipitable water, Journal of the Korean Society of Civil Engineers, 24(5), 413-420 (in Korean)
  25. Zuidema, P., Leon, D., Pazmany, A., and Cadeddu, M., 2012, Aircraft millimeter-wave passive sensing of cloud liquid water and water vapor during VOCALS-REx, Atmos. Chem. Phys., 12, 355-369. https://doi.org/10.5194/acp-12-355-2012