DOI QR코드

DOI QR Code

Molecular Characteristics and Potent Immunomodulatory Activity of Fasciola hepatica Cystatin

  • Zhang, Kai (College of Animal Science & Technology, Shihezi University) ;
  • Liu, Yucheng (College of Animal Science & Technology, Shihezi University) ;
  • Zhang, Guowu (College of Animal Science & Technology, Shihezi University) ;
  • Wang, Xifeng (College of Animal Science & Technology, Shihezi University) ;
  • Li, Zhiyuan (College of Animal Science & Technology, Shihezi University) ;
  • Shang, Yunxia (College of Animal Science & Technology, Shihezi University) ;
  • Ning, Chengcheng (College of Animal Science & Technology, Shihezi University) ;
  • Ji, Chunhui (College of Animal Science & Technology, Shihezi University) ;
  • Cai, Xuepeng (State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Xia, Xianzhu (College of Animal Science & Technology, Shihezi University) ;
  • Qiao, Jun (College of Animal Science & Technology, Shihezi University) ;
  • Meng, Qingling (College of Animal Science & Technology, Shihezi University)
  • Received : 2021.11.08
  • Accepted : 2022.03.10
  • Published : 2022.04.30

Abstract

Cystatin, a cysteine protease inhibitor found in many parasites, plays important roles in immune evasion. This study analyzed the molecular characteristics of a cystatin from Fasciola hepatica (FhCystatin) and expressed recombinant FhCystatin (rFhcystatin) to investigate the immune modulatory effects on lipopolysaccharide-induced proliferation, migration, cytokine secretion, nitric oxide (NO) production, and apoptosis in mouse macrophages. The FhCystatin gene encoded 116 amino acids and contained a conserved cystatin-like domain. rFhCystatin significantly inhibited the activity of cathepsin B. rFhCystatin bound to the surface of mouse RAW264.7 cells, significantly inhibited cell proliferation and promoted apoptosis. Moreover, rFhCystatin inhibited the expression of cellular nitric oxide, interleukin-6, and tumor necrosis factor-α, and promoted the expression of transforming growth factor-β and interleukin-10. These results showed that FhCystatin played an important role in regulating the activity of mouse macrophages. Our findings provide new insights into mechanisms underlying the immune evasion and contribute to the exploration of potential targets for the development of new drug to control F. hepatica infection.

Keywords

Acknowledgement

This work was supported by International Science & Technology Cooperation Program of XPCC (No. 2016AH006), Xinjiang Autonomous Region graduate innovation project (No. XJ2020G085) and Grant from National Key Research and Development Program (No. 2017YFD0501202). We thank the staff who provided the technical assistance for this study.

References

  1. Mazeri S, Rydevik G, Handel I, Bronsvoort BMD, Sargison N. Estimation of the impact of Fasciola hepatica infection on time taken for UK beef cattle to reach slaughter weight. Sci Rep 2017; 7: 7319. https://doi.org/10.1038/s41598-017-07396-1
  2. Beesley NJ, Caminade C, Charlier J, Flynn RJ, Hodgkinson JE, Martinez-Moreno A, Martinez-Valladares M, Perez J, Rinaldi L, Williams DJL. Fasciola and fasciolosis in ruminants in Europe: identifying research needs. Transbound Emerg Dis 2018; 65: 199-216. https://doi.org/10.1111/tbed.12682
  3. Mas-Coma S, Bargues MD, Valero MA. Human fascioliasis infection sources, their diversity, incidence factors, analytical methods and prevention measures-CORRIGENDUM. Parasitology 2020; 147: 601. https://doi.org/10.1017/S0031182020000256
  4. Monica CB, Francisco A, Joachim R, Antonio S. Commentary: human liver flukes. Front Public Health 2018; 30; 6: 122. https://doi.org/10.3389/fpubh.2018.00122
  5. Robinson MW, Dalton JP, O'Brien BA, Donnelly S. Fasciola hepatica: the therapeutic potential of a worm secretome. Int J Parasitol 2013; 43: 283-291. https://doi.org/10.1016/j.ijpara.2012.11.004
  6. Jefferies JR, Campbell AM, Rossum AJvan, Barrett J, Brophy PM. Proteomic analysis of Fasciola hepatica excretory-secretory products. Proteomics 2001; 1: 1128-1132. https://doi.org/10.1002/1615-9861(200109)1:9<1128::AID-PROT1128>3.0.CO;2-0
  7. Rodriguez E, Carasi P, Frigerio S, Costa V, Vliet S, Noya V. Fasciola hepatica immune regulates CD11c+ cells by interacting with the macrophage Gal/GalNAc lectin. Front Immunol 2017; 8: 264. https://doi.org/10.3389/fimmu.2017.00264
  8. Maizels RM, Smits HH, McSorley HJ. Modulation of host immunity by helminths: the expanding repertoire of parasite effector molecules. Immunity 2018; 49: 801-818. https://doi.org/10.1016/j.immuni.2018.10.016
  9. Robinson MW, Donnelly S, Hutchinson AT, To J, Taylor NL, Norton RS, Perugini MA, Dalton JP. A family of helminth molecules that modulate innate cell responses via molecular mimicry of host antimicrobial peptides. PLoS Pathog 2011; 7: e1002042. https://doi.org/10.1371/journal.ppat.1002042
  10. Abrahamson M, Alvarez-Fernandez M, Nathanson CM. Cystatins. Methods Enzymol 2003; 70: 179-199. https://doi.org/10.1042/bss0700179
  11. Murray J, Manoury B, Balic A, Watts C, Maizels RM. Bm-CPI-2, a cystatin from Brugia malayi nematode parasites, differs from Caenorhabditis elegans cystatins in a specific site mediating inhibition of the antigen-processing enzyme AEP. Mol Biochem Parasitol 2005; 139: 197-203. https://doi.org/10.1016/j.molbiopara.2004.11.008
  12. Cancela M, Corvo I, DA Silva E, Teichmann A, Roche L, Diaz A, Tort JF, Ferreira HB, Zaha A. Functional characterization of single-domain cystatin-like cysteine proteinase inhibitors expressed by the trematode Fasciola hepatica. Parasitology 2017; 144: 1695-1707. https://doi.org/10.1017/S0031182017001093
  13. Tian AL, Lu M, Calderon-Mantilla G, Petsalaki E, Dottorini T, Tian X, Wang Y, Huang SY, Hou JL, Li X, Elsheikha HM, Zhu XQ. A recombinant Fasciola gigantica 14-3-3 epsilon protein (rFg14-3-3e) modulates various functions of goat peripheral blood mononuclear cells. Parasit Vectors 2018; 11: 152. https://doi.org/10.1186/s13071-018-2745-4
  14. Boukli NM, Delgado B, Ricaurte M, Espino AM. Fasciola hepatica and Schistosoma mansoni: identification of common proteins by comparative proteomic analysis. J Parasitol 2011; 97: 852-861. https://doi.org/10.1645/GE-2495.1
  15. McManus DP, Dalton JP. Vaccines against the zoonotic trematodes Schistosoma japonicum, Fasciola hepatica, and Fasciola gigantica. Parasitology 2006; 133 (suppl): 43-61. https://doi.org/10.1017/s0031182006001806
  16. Liu Q, Huang SY, Yue DM, Wang JL, Wang Y, Li X, Zhu XQ. Proteomic analysis of Fasciola hepatica excretory and secretory products (FhESPs) involved in interacting with host PBMCs and cytokines by shotgun LC-MS/MS. Parasitol Res 2017; 116: 627-635. https://doi.org/10.1007/s00436-016-5327-4
  17. Yang X, Liu J, Yue Y, Chen W, Song M, Zhan X, Wu Z. Cloning, expression and characterisation of a type II cystatin from Schistosoma japonicum, which could regulate macrophage activation. Parasitol Res 2014; 113: 3985-3992. https://doi.org/10.1007/s00436-014-4064-9
  18. Kima PE. The amastigote forms of Leishmania are experts at exploiting host cell processes to establish infection and persist. Int J Parasitol 2007; 37: 1087-1096. https://doi.org/10.1016/j.ijpara.2007.04.007
  19. Sander AF, Lavstsen T, Rask TS, Lisby M, Salanti A, Fordyce SL. DNA secondary structures are associated with recombination in major Plasmodium falciparum variable surface antigen gene families. Nucleic Acids Res 2014; 42: 2270-2281. https://doi.org/10.1093/nar/gkt1174
  20. Klotz C, Ziegler T, Danilowicz-Luebert E, Hartmann S. Cystatins of parasitic organisms. Adv Exp Med Biol 2011; 712: 208-221. https://doi.org/10.1007/978-1-4419-8414-2_13
  21. Wang Y, Wu L, Liu X, Wang S, Ehsan M, Yan R, Song X, Xu L, Li X. Characterization of a secreted cystatin of the parasitic nematode Haemonchus contortus and its immune-modulatory effect on goat monocytes. Parasit Vectors 2017; 10: 425. https://doi.org/10.1186/s13071-017-2368-1
  22. Nakagawa TY, Rudensky AY. The role of lysosomal proteinases in MHC class II-mediated antigen processing and presentation. Immunity Rev 1999; 172: 121-129. https://doi.org/10.1111/j.1600-065x.1999.tb01361.x
  23. Chen L, He BH, Hou W, He L. Cysteine protease inhibitor of Schistosoma japonicum-a parasite-derived negative immunoregulatory factor. Parasitol Res 2017; 116: 901-908. https://doi.org/10.1007/s00436-016-5363-0
  24. Behrendt P, Arnold P, Brueck M, Rickert U, Lucius R, Hartmann S, Klotz C, Lucius R. A helminth protease inhibitor modulates the lipopolysaccharide-induced proinflammatory phenotype of microglia in vitro. Neuroimmunomodulation 2016; 23: 109-121. https://doi.org/10.1159/0004 44756
  25. SW, Cho MK, Park MK, Kang SA, Na BK, Ahn SC, Kim DH, Yu HS. Parasitic helminth cystatin inhibits DSS-induced intestinal inflammation via IL-10+F4/80+ macrophage recruitment. Korean J Parastiol 2011; 49: 245-254. https://doi.org/10.3347/kjp.2011.49.3.245
  26. Sun YX, Liu GY, Li ZT, Chen Y, Liu YF, Liu BY, Su Z. Modulation of dendritic cell function and immune response by cysteine protease inhibitor from murine nematode parasite Heligmosomoides polygyrus. Immunology 2013; 138: 370-381. https://doi.org/10.1111/imm.12049
  27. Varin A, Gordon S. Alternative activation of macrophages: immune function and cellular biology. Immunobiology 2009; 214: 630-641. https://doi.org/10.1016/j.immuni.2010.05.007
  28. Cervi L, Rossi G, Cejas H, Masih DT. Fasciola hepatica-induced immune suppression of spleen mononuclear cell proliferation: role of nitric oxide. Clin Immunol Immunopathol 1998; 87: 145-154. https://doi.org/10.1006/clin.1997.4499
  29. Escamilla A, Perez-Caballero R, Zafra R, Bautista MJ, Pacheco IL, Ruiz MT, Martinez-Cruz MS, Martinez-Moreno A, MolinaHernandez V, Perez J. Apoptosis of peritoneal leucocytes during early stages of Fasciola hepatica infections in sheep. Vet Parasitol 2017; 238: 49-53. https://doi.org/10.1016/j.vetpar.2017.03.015
  30. Chen D, Tian AL, Hou JL, Li JX, Tian X, Yuan XD, Li X, Elsheikha HM, Zhu XQ. The multitasking Fasciola gigantica Cathepsin B interferes with various functions of goat peripheral blood mononuclear cells in vitro. Front Immunol 2019; 10: 1707. https://doi.org/10.3389/fimmu.2019.01707
  31. Voll RE, Herrmann M, Roth EA, Stach C, Kalden JR, Girkontaite I. Immunosuppressive effects of apoptotic cells. Nature 1997; 390: 350-351. https://doi.org/10.1038/37022
  32. Bzowska M, Guzik K, Barczyk K, Ernst M, Flad HD, Pryjma J. Increased IL-10 production during spontaneous apoptosis of monocytes. Eur J Immunol 2002; 32: 2011-2020. https://doi.org/10.1002/1521-4141(200207)32:7<2011::AID-IMMU2011>3.0.CO;2-L
  33. Chen WJ, Frank ME, Jin W, Wahl SM. TGF-β released by apoptotic T cells contributes to an immunosuppressive milieu. Immunity 2001; 14: 715-725. https://doi.org/10.1016/s1074-7613(01)00147-9