DOI QR코드

DOI QR Code

Improvement in Mechanical Strength of α-Alumina Hollow Fiber Membrane by Introducing Nanosize γ-Alumina Particle as Sintering Agent

소결조제로 나노크기 γ-알루미나 입자의 도입에 따른 α-알루미나 중공사 분리막의 기계적 강도 향상

  • Kim, Yong-Bin (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Kim, Min-Zy (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Arepalli, Devipriyanka (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Cho, Churl-Hee (Graduate School of Energy Science and Technology, Chungnam National University)
  • 김용빈 (충남대학교 에너지과학기술대학원 에너지과학기술학과) ;
  • 김민지 (충남대학교 에너지과학기술대학원 에너지과학기술학과) ;
  • 아레팔리 데비프리얀카 (충남대학교 에너지과학기술대학원 에너지과학기술학과) ;
  • 조철희 (충남대학교 에너지과학기술대학원 에너지과학기술학과)
  • Received : 2022.04.22
  • Accepted : 2022.04.27
  • Published : 2022.04.30

Abstract

In the field of water treatment and pharmaceutical bio an alumina hollow fiber membrane used for mixture separation. However, due to the lack of strengths it is very brittle to handle and apply. Therefore, it is necessary to study and improve the bending strength of the membrane to 100 MPa or more. In this study, as the mixing ratio of the nano-particles increased to 0, 1, 3, and 5 wt%, the viscosity of the fluid mixture increased. The pore structure of the hollow membrane produced by interrupting the diffusion exchange rate of the solvent and non-solvent during the spinning process suppresses the formation of the finger-like structure and gradually increases the ratio of the sponge-like structure to improve the membrane mechanical strength to more than 100 MPa. As a result, an interparticle space was ensured to improve the porosity of the sponge-like structure with high permeability, and it showed excellent N2 permeability of about 100000 GPU and high water permeability of 3000 L/m2 h. Therefore, it can be concluded, that the addition of γ-Al2O3 nanoparticles as sintering aid is an important method to enhance the mechanical strength of the α-alumina hollow fiber membrane to maintain high permeability.

수처리 및 의약바이오 분야에서 유효물질 분리에 활용되고 있는 알루미나 중공사 분리막은 얇은 두께로 인해 취급 및 적용시 쉽게 파괴되는 단점이 있기 때문에 분리막의 강도를 100 MPa 이상으로 향상시키기 위한 연구가 필요하다. 본 연구에서는 나노입자의 함량을 0, 1, 3, 5 wt%로 증가시켰을 때 제조된 중공사 분리막의 특성을 평가하였다. 그 결과, 나노입자의 함량이 증가함에 따라 중공사 분리막의 강도는 79 MPa에서 115 MPa로 증가하였으며, 밀도는 1.76 g/m3에서 1.88 g/m3으로 증가하였고 기공률과 평균기공크기는 각각 51%에서 48%로, 416 nm에서 352 nm로 감소한 것을 확인하였다. 스폰지구조가 발달하고 스폰지구조의 기공크기가 향상된 알루미나 중공사 분리막은 100 MPa 이상으로 기계적 강도가 향상되었으며, 약 100000 GPU의 높은 질소 투과도 및 약 3000 L/m2h의 높은 물 투과도를 나타내었다. 따라서, γ-알루미나 나노입자를 소결조제로 첨가하는 것은 α-알루미나 중공사 분리막의 기계적 강도를 효과적으로 증진시키고 높은 투과성능을 유지할 수 있는 매우 유효한 방법임을 확인하였다.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부의 재원으로 한국연구재단 중견연구자사업의 지원을 받아 수행되었습니다 (NRF-2020R1A2C1013911).

References

  1. W. L. Ang, A. W. Mohammad, N. Hilal, and C. P. Leo, "A review on the applicability of integrated/hybrid membrane processes in water treatment and desalination plants", Desalination, 363, 2-18 (2015). https://doi.org/10.1016/j.desal.2014.03.008
  2. M. B. Asif and Z. Zhang, "Ceramic membrane technology for water and wastewater treatment: A critical review of performance, full-scale applications, membrane fouling and prospects", Chem. Eng. J., 418, 129481 (2021). https://doi.org/10.1016/j.cej.2021.129481
  3. M. C. Almandoz, C. L. Pagliero, N. A. Ochoa, and J. Marchese, "Composite ceramic membranes from natural aluminosilicates for microfiltration applications", Ceram. Int., 41, 5621-5633 (2015). https://doi.org/10.1016/j.ceramint.2014.12.144
  4. P. M. Kao, S. C. Huang, Y. C. Chang, and Y. C. Liu, "Development of continuous chitinase production process in a membrane bioreactor by Paenibacillus sp. CHE-N1", Process Biochem., 42, 606-611 (2007). https://doi.org/10.1016/j.procbio.2006.11.009
  5. Y.-M. Kim, D.-H. Lee, M.-Z. Kim, and C.-H. Cho, "Preparation and pervaporative alcohol dehydration of crystallographically b/c-axis oriented mordenite zeolite membranes", Membr. J., 28, 340-350 (2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.5.340
  6. S. Hu, M.-Z. Kim, D.-H. Lee, P. Sharma, M.-H. Han, and C.-H. Cho, "Effect of the pH value of seed coating solution on microstructure of silicalite-1 zeolite separation layer grown on α-alumina support", Membr. J., 25, 422-430 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.5.422
  7. S. Emonds, J. Kamp, R. Viermann, A. Kalde, H. Roth, and M. Wessling, "Open and dense hollow fiber nanofiltration membranes through a streamlined polyelectrolyte-based spinning process", J. Membr. Sci., 644, 120100 (2022). https://doi.org/10.1016/j.memsci.2021.120100
  8. Q. Gu, T. C. A. Ng, Y. Bao, H. Y. Ng, S. C. Tan, and J. Wang, "Developing better ceramic membranes for water and wastewater Treatment: Where microstructure integrates with chemistry and functionalities", Chem. Eng. J., 428, 130456 (2021).
  9. Z. Liu, X. Zhu, P. Liang, X. Zhang, K. Kimura, and X. Huang, "Distinction between polymeric and ceramic membrane in AnMBR treating municipal wastewater: In terms of irremovable fouling", J. Memb. Sci., 588, 117229 (2019). https://doi.org/10.1016/j.memsci.2019.117229
  10. D. Ewis, N. A. Ismail, M. A. Hafiz, A. Benamor, and A. H. Hawari, "Nanoparticles functionalized ceramic membranes: fabrication, surface modification, and performance", Environ. Sci. Pollut. Res., 28, 12256-12281 (2021). https://doi.org/10.1007/s11356-020-11847-0
  11. N. Ahmed and F. Q. Mir, "Preparation and characterization of ceramic membrane using waste almond shells as pore forming agent", Mater. Today Proc., 47, 1485-1489 (2021). https://doi.org/10.1016/j.matpr.2021.04.329
  12. E.-M. Yang, H. R. Lee, and C.-H. Cho, "Effect of precursor alumina particle size on pore structure and gas permeation properties of tubular α-alumina support prepared by slip casting process", Membr. J., 26, 372-380 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.5.372
  13. J. T. Jung, J. F. Kim, H. H. Wang, E. di Nicolo, E. Drioli, and Y. M. Lee, "Understanding the non-solvent induced phase separation (NIPS) effect during the fabrication of microporous PVDF membranes via thermally induced phase separation (TIPS)", J. Membr. Sci., 514, 250-263 (2016). https://doi.org/10.1016/j.memsci.2016.04.069
  14. C. F. Wan, T. Yang, W. Gai, Y. De Lee, and T. S. Chung, "Thin-film composite hollow fiber membrane with inorganic salt additives for high mechanical strength and high power density for pressure-retarded osmosis", J. Memb. Sci., 555, 388-397 (2018). https://doi.org/10.1016/j.memsci.2018.03.050
  15. Y. O. Raji, M. H. D. Othman, N. A. H. S. M. Nordin, Z. ShengTai, J. Usman, S. C. Mamah, A. F. Ismail, M. A. Rahman, J. Jaafar, "Fabrication of magnesium bentonite hollow fibre ceramic membrane for oil-water separation", Arab. J. Chem., 13, 5996-6008 (2020). https://doi.org/10.1016/j.arabjc.2020.05.001
  16. Y. R. Chen, L. H. Chen, C. H. Chen, C. C. Ko, A. Huang, C. L. Li, C. J. Chung, K., "Hydrophobic alumina hollow fiber membranes for sucrose concentration by vacuum membrane distillation", J. Membr. Sci., 555, 250-257 (2018). https://doi.org/10.1016/j.memsci.2018.03.048
  17. C. C. Ko, A. Ali, D. E. Drioli, K.-L. Tung, C.-H. Chen, Y.-R. Chen, M. Francesca, "Performance of ceramic membrane in vacuum membrane distillation and in vacuum membrane crystallization", Desalination, 440, 48-58 (2018). https://doi.org/10.1016/j.desal.2018.03.011
  18. J. Zhou, Q. Gu, F. Liu, S. Feng, Z. Zhong, and W. Xing, "Low-temperature sintering of silicon carbide membrane supports from disks to single- and 19-channel tubes", J. Eur. Ceram. Soc., 42, 2597-2608 (2022). https://doi.org/10.1016/j.jeurceramsoc.2022.01.051
  19. Y. Dong, B. Lin, J.-e. Zhou, X. Zhang, Y. Ling, X. Liu, G. Meng, S. Hampshire, "Corrosion resistance characterization of porous alumina membrane supports", Mater. Charact., 62, 409-418 (2011). https://doi.org/10.1016/j.matchar.2011.01.012
  20. Q. Chang, Y. Wang, S. Cerneaux, J. Zhou, X. Zhang, X. Wang, Y. Dong, "Preparation of microfiltration membrane supports using coarse alumina grains coated by nano TiO2 as raw materials", J. Eur. Ceram. Soc., 34, 4355-4361 (2014). https://doi.org/10.1016/j.jeurceramsoc.2014.07.010
  21. H. Qi, Y. Fan, W. Xing, and L. Winnubst, "Effect of TiO2 doping on the characteristics of macroporous Al2O3/TiO2 membrane supports", J. Eur. Ceram. Soc., 30, 1317-1325 (2010). https://doi.org/10.1016/j.jeurceramsoc.2009.12.011
  22. W. Qin, C. Peng, M. Lv, and J. Wu, "Preparation and properties of high-purity porous alumina support at low sintering temperature", Ceram. Int., 40, 13741-13746 (2014). https://doi.org/10.1016/j.ceramint.2014.05.044
  23. S. Sarkar, S. Bandyopadhyay, A. Larbot, and S. Cerneaux, "New clay-alumina porous capillary supports for filtration application", J. Membr. Sci., 392, 130-136 (2012). https://doi.org/10.1016/j.memsci.2011.12.010
  24. X. Yin, K. Guan, P. Gao, C. Peng, and J. Wu, "A preparation method for the highly permeable ceramic microfiltration membrane-precursor film firing method", RSC Adv., 8, 2906-2914 (2018). https://doi.org/10.1039/C7RA12314K
  25. M. Ray, P. Bhattacharya, R. Das, K. Sondhi, S. Ghosh, and S. Sarkar, "Preparation and characterization of macroporous pure alumina capillary membrane using boehmite as binder for filtration application", J. Porous Mater., 22, 1043-1052 (2015). https://doi.org/10.1007/s10934-015-9978-9
  26. A. Oun, N. Tahri, S. Mahouche-Chergui, B. Carbonnier, S. Majumdar, S. Sarkar, G. C. Sahoo, R. Ben Amar, "Tubular ultrafiltration ceramic membrane based on titania nanoparticles immobilized on macroporous clay-alumina support: Elaboration, characterization and application to dye removal", Sep. Purif. Technol., 188, 126-133 (2017). https://doi.org/10.1016/j.seppur.2017.07.005
  27. J. Ma, X. Xi, C. He, W. Chen, W. Tian, J. Li, C. Wang, B. Luo, A. Shui, K. Hua, "High-performance macro-porous alumina-mullite ceramic membrane supports fabricated by employing coarse alumina and colloidal silica", Ceram. Int., 45, 17946-17954 (2019). https://doi.org/10.1016/j.ceramint.2019.06.012
  28. D. N. Awang Chee, A. F. Ismail, F. Aziz, M. A. Mohamed Amin, and N. Abdullah, "The influence of alumina particle size on the properties and performance of alumina hollow fiber as support membrane for protein separation", Sep. Purif. Technol., 250, 117147 (2020). https://doi.org/10.1016/j.seppur.2020.117147
  29. H. N. Ch'ng and J. Pan, "Sintering of particles of different sizes", Acta Mater., 55, 813-824 (2007). https://doi.org/10.1016/j.actamat.2006.07.015
  30. K. Apmann, R. Fulmer, A. Soto, and S. Vafaei, "Thermal conductivity and viscosity: Review and optimization of effects of nanoparticles", Materials (Basel)., 14, 1-75 (2021).
  31. Y. Gao, "Correlated effect of air gap and PVP concentration on the structure and performance of PVDF ultrafiltration hollow fiber membrane", J. Membr. Sci. Res., 3, 78-83 (2017),
  32. Q. Gu, M. Kotobuki, C. H. Kirk, M. B. He, G. J. H. Lim, T. C. A. Ng, L. Zhang, H. Y. Ng, J. Wang, "Overcoming the trade-off between water permeation and mechanical strength of ceramic membrane supports by interfacial engineering", ACS Appl. Mater. Interfaces, 13, 29199-29211 (2021). https://doi.org/10.1021/acsami.1c08157
  33. K. Hua, A. Shui, L. Xu, K. Zhao, Q. Zhou, and X. Xi, "Fabrication and characterization of anorthite-mullite-corundum porous ceramics from construction waste", Ceram. Int., 42, 6080-6087 (2016). https://doi.org/10.1016/j.ceramint.2015.12.165