DOI QR코드

DOI QR Code

Understanding on TDS Creep Phenomena of Reverse Osmosis Membranes in Water Purifiers

역삼투막 정수기에서 발생하는 총용존고형물 크리프 현상의 이해

  • Kang, Sanghyeon (Department of Nano, Chemical and Biological Engineering, Seokyeong University) ;
  • Yun, Sunghan (The Environment Technology Institute, Coway Co., Ltd.)
  • 강상현 (서경대학교 나노화학생명공학과) ;
  • 윤성한 (코웨이 주식회사 환경기술연구소)
  • Received : 2022.03.16
  • Accepted : 2022.04.20
  • Published : 2022.04.30

Abstract

Water purifiers have a quite different characteristic in comparison with general membrane water treatment processes in which the running and resting are repeated dozens of times a day. In the case of water purifiers using reverse osmosis membranes, this characteristic makes a phenomenon that the total dissolved solids (TDS) of permeate in water purifiers at the beginning of running shows a higher value than a normal value (TDS reduction is lower than a normal value). It is called "TDS creep". The effects of resting times and feed concentrations on the TDS creep were investigated. The feed flushing, the volume increase in permeate side and the flushing with purified water were applied to reduce TDS creep and the effectiveness were observed. Among these trials, the minimization of concentration between feed and permeate side of reverse osmosis membrane like the flushing with purified water can be an ultimate solution to reduce the TDS creep.

정수기는 일반적인 산업용 막여과 수처리 공정과 다르게 운전과 휴지를 반복하는 특성이 있다. 이러한 특징 때문에 역삼투막을 사용하는 정수기의 경우, 재정수시에 정수수의 농도가 정상적인 값보다 높게 나오는 현상(제거율이 정상값보다 낮게 나오는 현상)이 있는데, 이를 "TDS creep"이라고 한다. 본 연구에서는 휴지시간과 농도에 따른 TDS creep 정도를 관찰하였다. 또한, TDS creep 현상을 저감하기 위해 원수 세척, 정수부의 부피 증가 및 정수 세척 방법 등을 시험하였고 이에 대한 실질적인 효과를 관찰하였다. 이러한 방법들 중에 정수수의 세척과 같이 역삼투막의 feed side와 permeate side의 농도차를 최소화하는 것이 TDS creep 현상을 해소하는 궁극적인 해결책임을 확인하였다.

Keywords

References

  1. C. Fritzmann, J. Lowenberg, T. Wintgens, and T. Melin, "State-of-the-art of reverse osmosis desalination", Desalination, 216, 1-76 (2007). https://doi.org/10.1016/j.desal.2006.12.009
  2. L. Malaeb and G. M. Ayoub, "Reverse osmosis technology for water treatment: State of the art review", Desalination, 267, 1-8 (2011). https://doi.org/10.1016/j.desal.2010.09.001
  3. B. Penate and L. Garcia-Rodriguez, "Current trends and future prospects in the design of seawater reverse osmosis desalination technology", Desalination, 284, 1-8 (2012). https://doi.org/10.1016/j.desal.2011.09.010
  4. J. R. Werber, A. Deshmukh, and M. Elimelech, "Can batch or semi-batch processes save energy in reverse-osmosis desalination?", Desalination, 402, 109-122 (2017). https://doi.org/10.1016/j.desal.2016.09.028
  5. Q. J. Wei, C. I. Tucker, P. J. Wu, A. M. Trueworthy, E. W. Tow, and J. H. Lienhard V, "Impact of salt retention on true batch reverse osmosis energy consumption: Experiments and model validation", Desalination, 479, 114-177 (2020).
  6. S. J. Wimalawanasa. "Purification of contaminated water with reverse osmosis: effective solution of providing clean water for human needs in developing countries", Int. J. Emerg. Technol. Adv. Eng., 3(12), 75-89 (2013).
  7. J. I. Cho, G. T. Kim, and Y. C. Ahn, "A study on characteristics of ilters for domestic household water purifier", J. Korean Soc. Mar. Eng., 37(5), 541-547 (2013). https://doi.org/10.5916/jkosme.2013.37.5.541
  8. V. Zaldivar, D. Carlile, and D. Powell. "RO: an overview on advances in POU technology", WCP online, July 15th (2000).
  9. H. Zhang, D. J. Averbeck, and Z. Cheng., "Water filtration system with recirculation to reduce total dissolved solids creep effect", US Patent 2018/0162761 A1, June 14 (2018).
  10. H. M. Moon, D. J. Jeong, B. P. Lee, S. K. Cho, S. H. Kang, S. H. Yun, J. H. Eom, D. S. Kang, and J. H. Lee. "Water purifier and control method for water purifier", US 2019/0083934 A1. March 21 (2019).
  11. S. S. Kim and J. U. Kim, "Reverse osmosis water purifier for discharging clean water directly", KR10-0480984, March 24 (2005).
  12. S. H. Kang, S. H. Yun, B. I. Kang, and J. M. Park, "A direct-type purifying device" KR10-1372615, March 04 (2014).
  13. T. Y. Cath, A. E. Childress, and M. Elimelech, "Forward osmosis: Principles, applications, and recent developments", J. Membr. Sci., 281, 70-87 (2006). https://doi.org/10.1016/j.memsci.2006.05.048