DOI QR코드

DOI QR Code

Korean Red Ginseng, a regulator of NLRP3 inflammasome, in the COVID-19 pandemic

  • Jung, Eui-Man (Department of Molecular Biology, College of Natural Science, Pusan National University) ;
  • Lee, Geun-Shik (College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University)
  • Received : 2022.02.03
  • Accepted : 2022.02.14
  • Published : 2022.05.01

Abstract

Coronavirus disease 2019 (COVID-19) exhibits various symptoms, ranging from asymptomatic to severe pneumonia or death. The major features of patients in severe COVID-19 are the dysregulation of cytokine secretion, pneumonia, and acute lung injury. Consequently, it leads to acute respiratory distress syndrome, disseminated intravascular coagulation, multiple organ failure, and death. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative virus of COVID-19, influences nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 3 (NLRP3), the sensor of inflammasomes, directly or indirectly, culminating in the assembly of NLRP3 inflammasome and activation of inflammatory caspases, which induce the inflammatory disruption in severe COVID-19. Accordingly, the target therapeutics for inflammasome has attracted attention as a treatment for COVID-19. Korean Red Ginseng (KRG) inhibits several inflammatory responses, including the NLRP3 inflammasome signaling. This review discusses the role of KRG in the treatment and prevention of COVID-19 based on its anti-NLRP3 inflammasome efficacy.

Keywords

Acknowledgement

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2018R1A2B2004097), Republic of Korea.

References

  1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020;382:727-33. https://doi.org/10.1056/NEJMoa2001017
  2. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 2020;5:536-44. https://doi.org/10.1038/s41564-020-0695-z
  3. Tan YJ, Lim SG, Hong W. Characterization of viral proteins encoded by the SARS-coronavirus genome. Antivir Res 2005;65:69-78. https://doi.org/10.1016/j.antiviral.2004.10.001
  4. Shah A. Novel coronavirus-induced NLRP3 inflammasome activation: a potential drug target in the treatment of COVID-19. Front Immunol 2020;11:1021. https://doi.org/10.3389/fimmu.2020.01021
  5. Berlin DA, Gulick RM, Martinez FJ. Severe covid-19. N Engl J Med 2020;383:2451-60. https://doi.org/10.1056/NEJMcp2009575
  6. Vora SM, Lieberman J, Wu H. Inflammasome activation at the crux of severe COVID-19. Nat Rev Immunol 2021;21:694-703. https://doi.org/10.1038/s41577-021-00588-x
  7. Cao X. COVID-19: immunopathology and its implications for therapy. Nat Rev Immunol 2020;20:269-70. https://doi.org/10.1038/s41577-020-0308-3
  8. Zheng Z, Peng F, Xu B, Zhao J, Liu H, Peng J, Li Q, Jiang C, Zhou Y, Liu S, et al. Risk factors of critical & mortal COVID-19 cases: a systematic literature review and meta-analysis. J Infect 2020;81:e16-25.
  9. Merad M, Martin JC. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol 2020;20:355-62. https://doi.org/10.1038/s41577-020-0331-4
  10. Tay MZ, Poh CM, Renia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol 2020;20:363-74. https://doi.org/10.1038/s41577-020-0311-8
  11. Ahn H, Kwon HM, Lee E, Kim PH, Jeung EB, Lee GS. Role of inflammasome regulation on immune modulators. J Biomed Res 2018;32:401-10. https://doi.org/10.7555/jbr.32.20170120
  12. Wen H, Ting JP, O'Neill LA. A role for the NLRP3 inflammasome in metabolic diseases-did Warburg miss inflammation? Nat Immunol 2012;13:352-7. https://doi.org/10.1038/ni.2228
  13. Shao BZ, Xu ZQ, Han BZ, Su DF, Liu C. NLRP3 inflammasome and its inhibitors: a review. Front Pharmacol 2015;6:262. https://doi.org/10.3389/fphar.2015.00262
  14. Yang Y, Wang H, Kouadir M, Song H, Shi F. Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors. Cell Death Dis 2019;10:128. https://doi.org/10.1038/s41419-019-1413-8
  15. Tozser J, Benko S. Natural compounds as regulators of NLRP3 inflammasome-mediated IL-1beta production. Med Inflam 2016;2016:5460302. https://doi.org/10.1155/2016/5460302
  16. Ahn H, Han BC, Kim J, Kang SG, Kim PH, Jang KH, So SH, Lee SH, Lee GS. Nonsaponin fraction of Korean Red Ginseng attenuates cytokine production via inhibition of TLR4 expression. J Ginseng Res 2019;43:291-9. https://doi.org/10.1016/j.jgr.2018.03.003
  17. Ahn H, Han BC, Lee SH, Lee GS. Fructose-arginine, a non-saponin molecule of Korean Red Ginseng, attenuates AIM2 inflammasome activation. J Ginseng Res 2020;44:808-14. https://doi.org/10.1016/j.jgr.2020.06.002
  18. Han BC, Ahn H, Lee J, Jeon E, Seo S, Jang KH, Lee SH, Kim CH, Lee GS. Nonsaponin fractions of Korean Red Ginseng extracts prime activation of NLRP3 inflammasome. J Ginseng Res 2017;41:513-23. https://doi.org/10.1016/j.jgr.2016.10.001
  19. Ahn H, Kang SG, Yoon SI, Kim PH, Kim D, Lee GS. Poly-gamma-glutamic acid from Bacillus subtilis upregulates pro-inflammatory cytokines while inhibiting NLRP3, NLRC4 and AIM2 inflammasome activation. Cell Mol Immunol 2018;15:111-9. https://doi.org/10.1038/cmi.2016.13
  20. Ahn H, Kim J, Lee MJ, Kim YJ, Cho YW, Lee GS. Methylsulfonylmethane inhibits NLRP3 inflammasome activation. Cytokine 2015;71:223-31. https://doi.org/10.1016/j.cyto.2014.11.001
  21. Ahn H, Lee GS. Isorhamnetin and hyperoside derived from water dropwort inhibits inflammasome activation. Phytomed: Int J Phytotherapy Phytopharmacol 2017;24:77-86. https://doi.org/10.1016/j.phymed.2016.11.019
  22. Ahn H, Lee GS. Riboflavin, vitamin B2, attenuates NLRP3, NLRC4, AIM2, and non-canonical inflammasomes by the inhibition of caspase-1 activity. Sci Rep 2020;10:19091. https://doi.org/10.1038/s41598-020-76251-7
  23. Kim J, Ahn H, Han BC, Lee SH, Cho YW, Kim CH, Hong EJ, An BS, Jeung EB, Lee GS. Korean red ginseng extracts inhibit NLRP3 and AIM2 inflammasome activation. Immunol Lett 2014;158:143-50. https://doi.org/10.1016/j.imlet.2013.12.017
  24. Kim J, Ahn H, Han BC, Shin H, Kim JC, Jung EM, Kim J, Yang H, Lee J, Kang SG, et al. Obovatol inhibits NLRP3, AIM2, and non-canonical inflammasome activation. Phytomed: Int J Phytotherapy Phytopharmacol 2019;63:153019.
  25. Lee J, Ahn H, Hong EJ, An BS, Jeung EB, Lee GS. Sulforaphane attenuates activation of NLRP3 and NLRC4 inflammasomes but not AIM2 inflammasome. Cell Immunol 2016;306-307:53-60. https://doi.org/10.1016/j.cellimm.2016.07.007
  26. Yoon SJ, Kim SK, Lee NY, Choi YR, Kim HS, Gupta H, Youn GS, Sung H, Shin MJ, Suk KT. Effect of Korean red ginseng on metabolic syndrome. J Ginseng Res 2021;45:380-9. https://doi.org/10.1016/j.jgr.2020.11.002
  27. Yun M, Yi YS. Regulatory roles of ginseng on inflammatory caspases, executioners of inflammasome activation. J Ginseng Res 2020;44:373-85. https://doi.org/10.1016/j.jgr.2019.12.006
  28. Yi YS. Roles of ginsenosides in inflammasome activation. J Ginseng Res 2019;43:172-8. https://doi.org/10.1016/j.jgr.2017.11.005
  29. Lee GS, Subramanian N, Kim AI, Aksentijevich I, Goldbach-Mansky R, Sacks DB, Germain RN, Kastner DL, Chae JJ. The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature 2012;492:123-7. https://doi.org/10.1038/nature11588
  30. Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol 2016;16:407-20. https://doi.org/10.1038/nri.2016.58
  31. Latz E, Xiao TS, Stutz A. Activation and regulation of the inflammasomes. Nat Rev Immunol 2013;13:397-411. https://doi.org/10.1038/nri3452
  32. Ahn H, Lee H, Lee G, Park J, Sung HW, Lee E, Lee GS. Parabens disrupt noncanonical inflammasome activation. Int Immunopharm 2021;101:108196. https://doi.org/10.1016/j.intimp.2021.108196
  33. Ahn H, Lee G, Kim J, Park J, Kang SG, Yoon SI, Lee E, Lee GS. NLRP3 triggers attenuate lipocalin-2 expression independent with inflammasome activation. Cells 2021:10.
  34. Ahn H, Lee G, Lee GS. Lower temperatures exacerbate NLRP3 inflammasome activation by promoting monosodium urate crystallization. Causing Gout. Cells 2021:10.
  35. Kayagaki N, Stowe IB, Lee BL, O'Rourke K, Anderson K, Warming S, Cuellar T, Haley B, Roose-Girma M, Phung QT, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 2015;526:666-71. https://doi.org/10.1038/nature15541
  36. Man SM, Karki R, Kanneganti TD. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev 2017;277:61-75. https://doi.org/10.1111/imr.12534
  37. Christgen S, Zheng M, Kesavardhana S, Karki R, Malireddi RKS, Banoth B, Place DE, Briard B, Sharma BR, Tuladhar S, et al. Identification of the PAN-optosome: a molecular platform triggering pyroptosis, apoptosis, and necroptosis (PANoptosis). Front Cellul Infect Microbiol 2020;10:237. https://doi.org/10.3389/fcimb.2020.00237
  38. Junqueira C, Crespo A, Ranjbar S, Lewandrowski M, Ingber J, de Lacerda LB, et al. SARS-CoV-2 infects blood monocytes to activate NLRP3 and AIM2 inflammasomes, pyroptosis and cytokine release. Res Square (Preprint) 2021.
  39. Rodrigues TS, de Sa KSG, Ishimoto AY, Becerra A, Oliveira S, Almeida L, Goncalves AV, Perucello DB, Andrade WA, Castro R, et al. Inflammasomes are activated in response to SARS-CoV-2 infection and are associated with COVID-19 severity in patients. J Exp Med 2021:218.
  40. Liao M, Liu Y, Yuan J, Wen Y, Xu G, Zhao J, Cheng L, Li J, Wang X, Wang F, et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat Med 2020;26:842-4. https://doi.org/10.1038/s41591-020-0901-9
  41. Ferreira AC, Soares VC, de Azevedo-Quintanilha IG, Dias S, Fintelman-Rodrigues N, Sacramento CQ, Mattos M, de Freitas CS, Temerozo JR, Teixeira L, et al. Correction: SARS-CoV-2 engages inflammasome and pyroptosis in human primary monocytes. Cell Death Discov 2021;7:116.
  42. Shimabukuro-Vornhagen A, Godel P, Subklewe M, Stemmler HJ, Schlosser HA, Schlaak M, Kochanek M, Boll B, von Bergwelt-Baildon MS. Cytokine release syndrome. J Immunotherapy Canc 2018;6:56. https://doi.org/10.1186/s40425-018-0343-9
  43. Freeman TL, Swartz TH. Targeting the NLRP3 inflammasome in severe COVID-19. Front Immunol 2020;11:1518. https://doi.org/10.3389/fimmu.2020.01518
  44. Godeau D, Petit A, Richard I, Roquelaure Y, Descatha A. Return-to-work, disabilities and occupational health in the age of COVID-19. Scand J Work Environ Health 2021;47:408-9. https://doi.org/10.5271/sjweh.3960
  45. Ahn M, Anderson DE, Zhang Q, Tan CW, Lim BL, Luko K, Wen M, Chia WN, Mani S, Wang LC, et al. Dampened NLRP3-mediated inflammation in bats and implications for a special viral reservoir host. Nature Microbiol 2019;4:789-99. https://doi.org/10.1038/s41564-019-0371-3
  46. Zhao N, Di B, Xu LL. The NLRP3 inflammasome and COVID-19: activation, pathogenesis and therapeutic strategies. Cytokine Growth Factor Rev 2021;61:2-15. https://doi.org/10.1016/j.cytogfr.2021.06.002
  47. DeDiego ML, Nieto-Torres JL, Regla-Nava JA, Jimenez-Guardeno JM, Fernandez-Delgado R, Fett C, Castano-Rodriguez C, Perlman S, Enjuanes L. Inhibition of NF-kappaB-mediated inflammation in severe acute respiratory syndrome coronavirus-infected mice increases survival. J Virol 2014;88:913-24. https://doi.org/10.1128/JVI.02576-13
  48. Nieto-Torres JL, Verdia-Baguena C, Jimenez-Guardeno JM, Regla-Nava JA, Castano-Rodriguez C, Fernandez-Delgado R, Torres J, Aguilella VM, Enjuanes L. Severe acute respiratory syndrome coronavirus E protein transports calcium ions and activates the NLRP3 inflammasome. Virology 2015;485:330-9. https://doi.org/10.1016/j.virol.2015.08.010
  49. Chen IY, Moriyama M, Chang MF, Ichinohe T. Severe acute respiratory syndrome coronavirus viroporin 3a activates the NLRP3 inflammasome. Front Microbiol 2019;10:50. https://doi.org/10.3389/fmicb.2019.00050
  50. Li F, Li W, Farzan M, Harrison SC. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science 2005;309:1864-8. https://doi.org/10.1126/science.1116480
  51. Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, Huan Y, Yang P, Zhang Y, Deng W, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med 2005;11:875-9. https://doi.org/10.1038/nm1267
  52. Zhao M, Bai M, Ding G, Zhang Y, Huang S, Jia Z, Zhang A. Angiotensin II stimulates the NLRP3 inflammasome to induce podocyte injury and mitochondrial dysfunction. Kidney Diseases 2018;4:83-94. https://doi.org/10.1159/000488242
  53. Pan P, Shen M, Yu Z, Ge W, Chen K, Tian M, Xiao F, Wang Z, Wang J, Jia Y, et al. SARS-CoV-2 N protein promotes NLRP3 inflammasome activation to induce hyperinflammation. Nat Commun 2021;12:4664. https://doi.org/10.1038/s41467-021-25015-6
  54. Boriushkin E, Wang JJ, Li J, Bhatta M, Zhang SX. p58(IPK) suppresses NLRP3 inflammasome activation and IL-1beta production via inhibition of PKR in macrophages. Sci Rep 2016;6:25013. https://doi.org/10.1038/srep25013
  55. group C-C. Effect of anakinra versus usual care in adults in hospital with COVID-19 and mild-to-moderate pneumonia (CORIMUNO-ANA-1): a randomised controlled trial. Lancet Respir Med 2021;9:295-304. https://doi.org/10.1016/S2213-2600(20)30556-7
  56. Liu X, Xia S, Zhang Z, Wu H, Lieberman J. Channelling inflammation: gasdermins in physiology and disease. Nat Rev Drug Discov 2021;20:384-405. https://doi.org/10.1038/s41573-021-00154-z
  57. Reyes AZ, Hu KA, Teperman J, Wampler Muskardin TL, Tardif JC, Shah B, Pillinger MH. Anti-inflammatory therapy for COVID-19 infection: the case for colchicine. Ann Rheum Disease 2021;80:550-7.
  58. Li J, Wei Q, Li WX, McCowen KC, Xiong W, Liu J, Jiang W, Marin T, Thomas RL, He M, et al. Metformin use in diabetes prior to hospitalization: effects on mortality in covid-19. Endocr Pract: Offic J Am College Endocrinol Am Assoc Clinic Endocrinol 2020;26:1166-72.
  59. Fillmore N, Bell S, Shen C, Nguyen V, La J, Dubreuil M, Strymish J, Brophy M, Mehta G, Wu H, et al. Disulfiram use is associated with lower risk of COVID-19: a retrospective cohort study. PLoS One 2021;16:e0259061. https://doi.org/10.1371/journal.pone.0259061
  60. Olagnier D, Farahani E, Thyrsted J, Blay-Cadanet J, Herengt A, Idorn M, Hait A, Hernaez B, Knudsen A, Iversen MB, et al. SARS-CoV2-mediated suppression of NRF2-signaling reveals potent antiviral and anti-inflammatory activity of 4-octyl-itaconate and dimethyl fumarate. Nat Commun 2020;11:4938. https://doi.org/10.1038/s41467-020-18764-3
  61. Yoon SJ, Park JY, Choi S, Lee JB, Jung H, Kim TD, Yoon SR, Choi I, Shim S, Park YJ. Ginsenoside Rg3 regulates S-nitrosylation of the NLRP3 inflammasome via suppression of iNOS. Biochem Biophys Res Commun 2015;463:1184-9. https://doi.org/10.1016/j.bbrc.2015.06.080
  62. Zhou L, Zheng Y, Li Z, Bao L, Dou Y, Tang Y, Zhang J, Zhou J, Liu Y, Jia Y, et al. Compound K attenuates the development of atherosclerosis in ApoE(-/-) mice via LXRalpha activation. Int J Mol Sci 2016;17.
  63. Liu C, Wang J, Yang Y, Liu X, Zhu Y, Zou J, Peng S, Le TH, Chen Y, Zhao S, et al. Ginsenoside Rd ameliorates colitis by inducing p62-driven mitophagy-mediated NLRP3 inflammasome inactivation in mice. Biochem Pharmacol 2018;155:366-79. https://doi.org/10.1016/j.bcp.2018.07.010
  64. Xu Y, Yang C, Zhang S, Li J, Xiao Q, Huang W. Ginsenoside Rg1 protects against non-alcoholic fatty liver disease by ameliorating lipid peroxidation, endoplasmic reticulum stress, and inflammasome activation. Biol Pharmaceut Bull 2018;41:1638-44. https://doi.org/10.1248/bpb.b18-00132
  65. Han X, Song J, Lian LH, Yao YL, Shao DY, Fan Y, Hou LS, Wang G, Zheng S, Wu YL, et al. Ginsenoside 25-OCH3-PPD promotes activity of LXRs to ameliorate P2X7R-mediated NLRP3 inflammasome in the development of hepatic fibrosis. J Agric Food Chem 2018;66:7023-35. https://doi.org/10.1021/acs.jafc.8b01982
  66. Yuan C, Liu C, Wang T, He Y, Zhou Z, Dun Y, Zhao H, Ren D, Wang J, Zhang C, et al. Chikusetsu saponin IVa ameliorates high fat diet-induced inflammation in adipose tissue of mice through inhibition of NLRP3 inflammasome activation and NF-kappaB signaling. Oncotarget 2017;8:31023-40. https://doi.org/10.18632/oncotarget.16052
  67. Shao A, Fei J, Feng S, Weng J. Chikusetsu saponin IVa alleviated sevoflurane-induced neuroinflammation and cognitive impairment by blocking NLRP3/caspase-1 pathway. Pharmacol Rep : PR 2020;72:833-45. https://doi.org/10.1007/s43440-020-00078-2
  68. Zhang Z, Yang H, Yang J, Xie J, Xu J, Liu C, Wu C. Pseudoginsenoside-F11 attenuates cognitive impairment by ameliorating oxidative stress and neuroinflammation in dgalactose-treated mice. Int Immunopharm 2019;67:78-86. https://doi.org/10.1016/j.intimp.2018.11.026
  69. Min JH, Cho HJ, Yi YS. A novel mechanism of Korean red ginseng-mediated anti-inflammatory action via targeting caspase-11 non-canonical inflammasome in macrophages. J Ginseng Res 2022 [Press].
  70. Kelley N, Jeltema D, Duan Y, He Y. The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci 2019;20.
  71. Baeg IH, So SH. The world ginseng market and the ginseng (Korea). Journal of ginseng research 2013;37:1-7. https://doi.org/10.5142/jgr.2013.37.1