DOI QR코드

DOI QR Code

Identification of bridge bending frequencies through drive-by monitoring compensating vehicle pitch detrimental effect

  • Received : 2022.09.28
  • Accepted : 2022.12.08
  • Published : 2022.12.25

Abstract

Bridge structural health monitoring with the aim of continuously assessing structural safety and reliability represents a topic of major importance for worldwide infrastructure managers. In the last two decades, due to their potential economic and operational advantages, drive-by approaches experienced growing consideration from researcher and engineers. This work addresses two technical topics regarding indirect frequency estimation methods: bridge and vehicle dynamics overlapping, and bridge expansion joints impact. The experimental campaign was conducted on a mixed multi-span bridge located in Lombardy using a Ford Galaxy instrumented with a mesh of wireless accelerometers. The onboard time series were acquired for a number of 10 passages over the bridge,performed at a travelling speed of 30 km/h, with no limitations imposed to traffic. Exploiting an ad-hoc sensors positioning, pitch vehicle motion was compensated, allowing to estimate the first two bridge bending frequencies from PSD functions; moreover, the herein adopted approach proved to be insensitive to joints disturbance. Conclusively, a sensitivity study has been conducted to trace the relationship between estimation accuracy and number of trips considered in the analysis. Promising results were found, pointing out a clear positive correlation especially for the first bending frequency.

Keywords

References

  1. After Italy Collapse, Europe Asks: How Safe Are Our Bridges? (2018), https://www.nytimes.com/2018/08/21/world/europe/genoa-bridge-collapse.html, The New York Times (nytimes.com). 
  2. Ahmad, R. and Kamaruddin, S. (2012), "An overview of time-based and condition-based maintenance in industrial application", Comput. Ind. Eng., 63(1), 135-149. https://doi.org/10.1016/j.cie.2012.02.002. 
  3. American Society of Civil Engineering (2021), Bridge infrastructure report card. 
  4. Bernardini, L., Benedetti, L., Somaschini, C., Cazzulani, G. and Belloli, M. (2021), "SHM campaign on 138 spans of railway viaducts by means of OMA and wireless sensors network", Proceedings of the 9 th International Conference on Experimental Vibration Analysis for Civil Engineering Structures, Tokyo, September. https://doi.org/10.1007/978-3-030-93236-7_3. 
  5. Bridges across Europe are in a dangerous state, warn experts (2018), https://www.theguardian.com/world/2018/aug/16/bridges-across-europe-are-in-a-dangerous-state-warn-experts, The Guardian (theguardian.com). 
  6. Cebon, D. (1999), Handbook of Vehicle-Road Interaction, Swets & Zeitlinger Publishers. 
  7. Elhattab, A., Uddin, N. and OBrien, E. (2016), "Drive-by bridge damage monitoring using bridge displacement profile difference", J. Civil Struct. Health Monit., 6(5), 839-850. https://doi.org/10.1007/s13349-016-0203-6. 
  8. European Commission (2020), EU Transport in Figures, Publications Office of the EU. 
  9. Ferrovie dello Stato (1949), Disegno d'insieme. Linea: Voghera - Pavia; Ponte: sul fiume Po a Mezzana Corti, Archivio documenti Direzione Territoriale di Milano. 
  10. Fujino, Y., Siringoringo, D.M. and Abe, M. (2009), "The needs for advanced sensor technologies in risk assessment of civil infrastructures", Smart Struct. Syst., 5(2), 173-191. https://doi.org/10.12989/sss.2009.5.2.173. 
  11. Germany tries to close infrastructure backlog (2018), https://www.dw.com/en/germany-tries-to-close-infrastructure-backlog/a-45082919, Deutsche Welle (dw.com). 
  12. Gkoumas, K., Gkoktsi, K., Bono, F., Galassi, M.C., Tirelli, D., Zona, A. and Nguyen, A. (2021), "The way forward for indirect Structural Health Monitoring (iSHM) using connected and automated vehicles in Europe", Infrastructures, 6(3). https://doi.org/10.3390/infrastructures. 
  13. Gonzalez, A., Covian, E. and Madera, J. (2008), "Determination of bridge natural frequencies using a moving vehicle instrumented with accelerometers and a geographical positioning system", Civil-Comp Proceedings, 88. https://doi.org/10.4203/ccp.88.281. 
  14. Gonzalez, A., Obrien, E.J. and Mcgetrick, P.J. (2010), "Detection of bridge dynamic parameters using an instrumented vehicle", Proceedings of the 5th World Conference on Structural Control and Monitoring, Tokyo, July. https://www.researchgate.net/publication/269409631. 
  15. Gonzalez, A., Obrien, E.J. and McGetrick, P.J. (2012), "Identification of damping in a bridge using a moving instrumented vehicle", J. Sound Vib., 331(18), 4115-4131. https://doi.org/10.1016/j.jsv.2012.04.019. 
  16. Jeong, Y., Kim, W.S., Lee, I. and Lee, J. (2018), "Bridge inspection practices and bridge management programs in China, Japan, Korea, and U.S.", J. Struct. Integrity Maint., 3(2), 126-135. https://doi.org/10.1080/24705314.2018.1461548. 
  17. Keenahan, J., OBrien, E.J., McGetrick, P.J. and Gonzalez, A. (2014), "The use of a dynamic truck-trailer drive-by system to monitor bridge damping", Struct. Health Monit., 13(2), 143-157. https://doi.org/10.1177/1475921713513974. 
  18. Kim, C.W., Inoue, S., Sugiura, K., McGetrick, P.J. and Kawatani, M. (2016), "Extracting bridge frequencies from dynamic responses of two passing vehicles", Insights and Innovations in Structural Engineering, Mechanics and Computation - Proceedings of the 6th International Conference on Structural Engineering, Mechanics and Computation, SEMC 2016, 1858-1864. https://doi.org/10.1201/9781315641645-307. 
  19. Limongelli, M.P., Gentile, C., Biondini, F., di Prisco, M., Ballio, F., Belloli, M., Resta, F., Vigo, P. and Colombo, A. (2022), "The MoRe guidelines for monitoring of transport infrastructures", Proceedings of the 1st Conference of the European Association on Quality Control of Bridges and Structures, Padua, August-September. https://doi.org/10.1007/978-3-030-91877-4_35. 
  20. Lin, C.W. and Yang, Y.B. (2005), "Use of a passing vehicle to scan the fundamental bridge frequencies: An experimental verification", Eng. Struct., 27(13), 1865-1878. https://doi.org/10.1016/j.engstruct.2005.06.016. 
  21. Malekjafarian, A., McGetrick, P.J. and Obrien, E.J. (2015), "A review of indirect bridge monitoring using passing vehicles", Shock Vib., 2015. https://doi.org/10.1155/2015/286139. 
  22. Malekjafarian, A., Martinez, D. and Obrien, E.J. (2018), "The feasibility of using laser doppler vibrometer measurements from a passing vehicle for bridge damage detection", Shock Vib., 2018. https://doi.org/10.1155/2018/9385171. 
  23. Martinez, D., Obrien, E.J. and Sevillano, E. (2016), "Damage detection by drive-by monitoring using the vertical displacements of a bridge", Proceedings of the 6th International Conference on Structural Engineering, Mechanics and Computation, Cape Town, September. https://doi.org/10.1201/9781315641645-341. 
  24. Mastinu, G. and Ploechl, M. (2014), Road and Off-Road Vehicle Systems Dynamics Handbook, CRC Press. 
  25. Matarazzo, T. J., Santi, P., Pakzad, S. N., Carter, K., Ratti, C., Moaveni, B., Osgood, C. and Jacob, N. (2018), "Crowdsensing framework for monitoring bridge vibrations using moving smartphones", Proceedings of the IEEE, 106(4), 577-593. https://doi.org/10.1109/JPROC.2018.2808759. 
  26. Matarazzo, T.J., Kondor, D., Milardo, S., Eshkevari, S.S., Santi, P., Pakzad, S.N., Buehler, M.J. and Ratti, C. (2020), "Crowdsourcing bridge vital signs with smartphone vehicle trips", http://arxiv.org/abs/2010.07026. 
  27. MATLAB R2022a, The MathWorks, Inc., Natick, Massachusetts, United States. 
  28. MATLAB pwelch (2006), Welch's power spectral density estimate; The MathWorks, Inc., Natick, Massachusetts, United States. https://www.mathworks.com/help/signal/ref/pwelch.html. 
  29. MATLAB tukeywin (2006), Tukey (tapered cosine) window; The MathWorks, Inc., Natick, Massachusetts, United States. https://www.mathworks.com/help/signal/ref/tukeywin.html. 
  30. McGetrick, P.J., Gonzalez, A. and OBrien, E.J. (2009), "Theoretical investigation of the use of a moving vehicle to identify bridge dynamic parameters", Insight: Non-Destructive Testing and Condition Monitoring, 51(8), 433-438. https://doi.org/10.1784/insi.2009.51.8.433. 
  31. Mcgetrick, P.J. and Kim, C.W. (2013), "A parametric study of a drive by bridge inspection system based on the Morlet wavelet", Key Eng. Mater., 569-570, 262-269. https://doi.org/10.4028/www.scientific.net/KEM.569-570.262. 
  32. McGetrick, P.J., Hester, D. and Taylor, S.E. (2017), "Implementation of a drive-by monitoring system for transport infrastructure utilising smartphone technology and GNSS", J. Civil Struct. Health Monit., 7(2), 175-189. https://doi.org/10.1007/s13349-017-0218-7. 
  33. OBrien, E.J. and Malekjafarian, A. (2016), "A mode shape-based damage detection approach using laser measurement from a vehicle crossing a simply supported bridge", Struct. Control Health Monit., 23(10), 1273-1286. https://doi.org/10.1002/stc.1841. 
  34. OBrien, E.J., Malekjafarian, A. and Gonzalez, A. (2017), "Application of empirical mode decomposition to drive-by bridge damage detection", Eur. J. Mech. A/Solids, 61, 151-163. https://doi.org/10.1016/j.euromechsol.2016.09.009. 
  35. Regione Lombardia (2020), Scheda Manufatto, STRADENET: Sistema Informativo Strade di Regione Lombardia. 
  36. Regione Lombardia - Politecnico di Milano (2019). Accordo Di Collaborazione Tra Regione Lombardia E Politecnico Di Milano Per La Definizione Di Criteri E Linee Guida Per La Manutenzione E Gestione Delle Infrastrutture Viarie. 
  37. Shokravi, H., Shokravi, H., Bakhary, N., Heidarrezaei, M., Koloor, S.S.R. and Petru, M. (2020), "Vehicle-assisted techniques for health monitoring of bridges", Sensors, 20(12), 1-29. https://doi.org/10.3390/s20123460. 
  38. Singh, P. and Sadhu, A. (2022), "A hybrid time-frequency method for robust drive-by modal identification of bridges", Eng. Struct., 266(2022). https://doi.org/10.1016/j.engstruct.2022.114624. 
  39. Siringoringo, D.M. and Fujino, Y. (2012), "Estimating bridge fundamental frequency from vibration response of instrumented passing vehicle: Analytical and experimental study", Adv. Struct. Eng., 15(3), 417-433. https://doi.org/10.1260/1369-4332.15.3.417. 
  40. Sitton, J.D., Zeinali, Y., Rajan, D. and Story, B.A. (2020), "Frequency estimation on two-span continuous bridges using dynamic responses of passing vehicles", J. Eng. Mech., 146(1). https://doi.org/10.1061/(asce)em.1943-7889.0001698. 
  41. Thousands of UK bridges at risk of collapse, warns RAC (2017), https://www.independent.co.uk/news/uk/home-news/thousands-uk-bridges-substandard-at-risk-of-collapse-not-fit-to-take-weight-lorries-hgvs-a7621661.html, The Independent (independent.co.uk). 
  42. Yang, Y.B., Lin, C. W. and Yau, J. D. (2004), "Extracting bridge frequencies from the dynamic response of a passing vehicle", J. Sound Vib., 272(3-5), 471-493. https://doi.org/10.1016/S0022-460X(03)00378-X. 
  43. Yang, Y.B. and Chang, K.C. (2009a), "Extraction of bridge frequencies from the dynamic response of a passing vehicle enhanced by the EMD technique", J. Sound Vib., 322(4-5), 718-739. https://doi.org/10.1016/j.jsv.2008.11.028. 
  44. Yang, Y.B. and Chang, K.C. (2009b), "Extracting the bridge frequencies indirectly from a passing vehicle: Parametric study", Eng. Struct., 31(10), 2448-2459. https://doi.org/10.1016/j.engstruct.2009.06.001. 
  45. Yang, Y.B. and Yang, J.P. (2018), "State-of-the-art review on modal identification and damage detection of bridges by moving test vehicles", Int. J. Struct. Stab. Dynam., 18(2). https://doi.org/10.1142/S0219455418500256. 
  46. Yang, Y.B., Li, Z., Wang, Z.L., Shi, K., Xu, H., Qiu, F.Q. and Zhu, J.F. (2022), "A novel frequency-free movable test vehicle for retrieving modal parameters of bridges: Theory and experiment", Mech. Syst. Signal Pr., 170. https://doi.org/10.1016/j.ymssp.2022.108854. 
  47. Zhang, Y., Wang, L. and Xiang, Z. (2012), "Damage detection by mode shape squares extracted from a passing vehicle", J. Sound Vib., 331(2), 291-307. https://doi.org/10.1016/j.jsv.2011.09.004.