DOI QR코드

DOI QR Code

Evaluating the Restoration of a Stream in an Abandoned Mine Land via Biomass Calculation of Benthic Macroinvertebrates

  • Mi-Jung Bae (Nakdonggang National Institute of Biological Resources) ;
  • Hyeon-Jung Seong (Nakdonggang National Institute of Biological Resources) ;
  • Seong-Nam Ham (Nakdonggang National Institute of Biological Resources) ;
  • Eui-Jin Kim (Nakdonggang National Institute of Biological Resources)
  • Received : 2022.12.25
  • Accepted : 2022.12.29
  • Published : 2022.12.31

Abstract

It is essential that continual assessments of the impact of mine-derived water as a long-lasting burden on freshwater environments. Abundance-based evaluations of benthic macroinvertebrates have been conducted to evaluate anthropogenic disturbances and devise policies to reduce their impact. In this study, the status of a stream habitat was evaluated based on the body length and biomass weight of benthic macroinvertebrates of the family Baetidae. Following the renewal of the mining water treatment plant, the abundance of Baetidae assemblages recovered to a level comparable to that of a reference site. However, relatively low values were found for both body length and biomass weight in Baetidae species inhabiting the reddened streambed area, suggesting that the habitat has not yet been completely recovered despite the recovery of the abundance of the Baetidae assemblages. Therefore, continuous investigation and evaluation of this disturbed stream are necessary until their growth conditions of the habitat have functionally recovered.

Keywords

Acknowledgement

This work was supported by a grant (NNIBR202201103) from the Nakdonggang National Institute of Biological Resources (NNIBR) funded by the Ministry of Environment (MOE), Republic of Korea, as well as by the National Research Foundation of Korea (NRF) grants funded by the Korean government(MSIT)(No. 2019R1A2C2089870).

References

  1. Albarino, R.J. and E.G. Balseiro. 2002. Leaf litter breakdown in Patagonian streams: native versus exotic trees and the effect of invertebrate size. Aquatic Conservation: Marine and Freshwater Ecosystems 12(2): 181-192. https://doi.org/10.1002/aqc.511
  2. Bae, M.J., J.K. Hong and E.J. Kim. 2021a. Evaluation of the impacts of abandoned mining areas: a case study with benthic macroinvertebrate assemblages. International Journal of Environmental Research and Public Health 18(21): 11132.
  3. Bae, M.J., S.N. Ham, Y.K. Lee and E.J. Kim. 2021b. Evaluation of Benthic Macroinvertebrate Diversity in a Stream of Abandoned Mine Land Based on Environmental DNA (eDNA) Approach. Korean Journal of Ecology and Environment 54(3): 221-228. https://doi.org/10.11614/KSL.2021.54.3.221
  4. Benke, A.C., A.D. Huryn, L.A. Smock and J.B. Wallace. 1999. Length-mass relationships for freshwater macroinvertebrates in North America with particular reference to the southeastern United States. Journal of the North American Benthological Society 18(3): 308-343. https://doi.org/10.2307/1468447
  5. Benke, A.C. and A.D. Huryn. 2007. Secondary production of macroinvertebrates. p. 691-710. In: Methods in stream ecology, Academic Press.
  6. Benke, A.C., A.D. Huryn. 2010 Benthic invertebrate production-facilitating answers to ecological riddles in freshwater ecosystems. Journal of the North American Benthological Society 29: 264-285. https://doi.org/10.1899/08-075.1
  7. Benke, A.C. and A.D. Huryn. 2017. Secondary production and quantitative food webs. p. 235-254. In: Methods in stream ecology. Academic Press.
  8. Burgherr, P. and E.I. Meyer. 1997. Regression analysis of linear body dimensions vs. dry mass in stream macroinvertebrates. Archiv fur Hydrobiologie 139(1): 101-112. https://doi.org/10.1127/archiv-hydrobiol/139/1997/101
  9. Derek, A. and Wheeler, P. 2020. Package 'FSA': Simple Fisheries Stock Assessment Methods. R Packag. version 0.8.30. (accessed on 1 June 2021).
  10. Di Sabatino, A., G. Cristiano, M. Pinna, P. Lombardo, F.P. Miccoli, G. Marini, P. Vignini and B. Cicolani. 2014. Structure, functional organization and biological traits of macroinvertebrate assemblages from leaf-bags and benthic samples in a third-order stream of Central Apennines (Italy). Ecological Indicators 46: 84-91. https://doi.org/10.1016/j.ecolind.2014.06.005
  11. Ferreiro, N., C. Feijoo, A. Giorgi and L. Leggieri. 2011. Effects of macrophyte heterogeneity and food availability on structural parameters of the macroinvertebrate community in a Pampean stream. Hydrobiologia 664(1): 199-211. https://doi.org/10.1007/s10750-010-0599-7
  12. Kasangaki, A., D. Babaasa, J. Efitre, A. McNeilage and R. Bitariho. 2006. Links between anthropogenic perturbations and benthic macroinvertebrate assemblages in Afromontane forest streams in Uganda. Hydrobiologia 563(1): 231-245. https://doi.org/10.1007/s10750-005-0009-8
  13. Larranaga, A., A. Basaguren, A. Elosegi and J. Pozo. 2009. Impacts of Eucalyptus globulus plantations on Atlantic streams: changes in invertebrate density and shredder traits. Fundamental and Applied Limnology 175(2): 151.
  14. Ligeiro, R., R.M. Hughes, P.R. Kaufmann, J. Heino, A.S. Melo and M. Callisto. 2020. Choice of field and laboratory methods affects the detection of anthropogenic disturbances using stream macroinvertebrate assemblages. Ecological Indicators 115: 106382.
  15. Maloney, K.O., P. Munguia and R.M. Mitchell. 2011. Anthropogenic disturbance and landscape patterns affect diversity patterns of aquatic benthic macroinvertebrates. Journal of the North American Benthological Society 30(1): 284-295. https://doi.org/10.1899/09-112.1
  16. Marques, M.J., E. Martinez-Conde, J.V. Rovira and S. Ordonez. 2001. Heavy metals pollution of aquatic ecosystems in the vicinity of a recently closed underground lead-zinc mine (Basque Country, Spain). Environmental Geology 40: 1125-1137. https://doi.org/10.1007/s002540100314
  17. Nakano, D., N. Kuhara and F. Nakamura. 2007. Changes in size structure of macroinvertebrate assemblages with habitat modification by aggregations of caddisfly cases. Journal of the North American Benthological Society 26(1): 103-110. https://doi.org/10.1899/0887-3593(2007)26[103:CISSOM]2.0.CO;2
  18. Rico-Sanchez, A.E., A.J. Rodriguez-Romero, J.E. Sedeno-Diaz, E. Lopez-Lopez and A. Sundermann. 2022. Aquatic macroinvertebrate assemblages in rivers influenced by mining activities. Scientific Reports 12(1): 1-14. https://doi.org/10.1038/s41598-021-99269-x
  19. Trigal, C., F. Garcia-Criado and C.F. ALAEZ. 2007. Macroinvertebrate communities of mediterranean ponds (North Iberian Plateau): importance of natural and human-induced variability. Freshwater Biology 52(10): 2042-2055. https://doi.org/10.1111/j.1365-2427.2007.01805.x
  20. Wickham, H., R. Francois, L. Henry and K. Muller. 2020. Dplyr: A grammar of data manipulation. Retrieved from https://CRAN.R-project.org/package=dplyr (assessced on June 1, 2022).
  21. Von Schiller, D. and A.G. Solimini. 2005. Differential effects of preservation on the estimation of biomass of two common mayfly species. Archiv fur Hydrobiologie 164(3): 325-334. https://doi.org/10.1127/0003-9136/2005/0164-0325