DOI QR코드

DOI QR Code

Collapse fragility analysis of the soil nail walls with shotcrete concrete layers

  • Bayat, Mahmoud (Department of Civil and Environmental Engineering, University of South Carolina) ;
  • Emadi, Amin (Department of Civil Engineering, Pajoohesh Consulting Engineers) ;
  • Kosariyeh, Amir Homayoun (Department of Civil Engineering, Roudehen Branch, Islamic Azad University) ;
  • Kia, Mehdi (Department of Civil Engineering, University of Science and Technology of Mazandaran) ;
  • Bayat, Mahdi (Department of Civil Engineering, Roudehen Branch, Islamic Azad University)
  • Received : 2020.08.23
  • Accepted : 2022.05.02
  • Published : 2022.05.25

Abstract

The seismic analytic collapse fragility of soil nail wall structures with a shotcrete concrete covering is investigated in this paper. The finite element modeling process has been well described. The fragility function evaluates the link between ground motion intensities and the likelihood of reaching a specific level of damage. The soil nail wall has been subjected to incremental dynamic analysis (IDA) from medium to strong ground vibrations. The nonlinear dynamic analysis of the soil nail wall uses a set of 20 earthquake ground motions with varying PGAs. PGD is utilized as an intensity measure, the numerical findings demonstrate that the soil nailing wall reaction is particularly sensitive to earthquake intensity measure (IM).

Keywords

References

  1. Agency, F.E.M. (2009), Quantification of Building Seismic Performance Factors, FEMA P695, Washington, DC.
  2. Ahmadi, H.R. and Anvari, D. (2018), "New damage index based on least squares distance for damage diagnosis in steel girder of bridge's deck", Struct. Control Health Monit., 25(10), e2232. https://doi.org/10.1002/stc.2232.
  3. Ardakani, A., Bayat, M. and Javanmard, M. (2014), "Numerical modeling of soil nail walls considering Mohr Coulomb, hardening soil and hardening soil with small-strain stiffness effect models", Geomech. Eng., 6(4), 391-401. https://doi.org/10.12989/gae.2014.6.4.391.
  4. Ardakani, A., Gholampoor, N., Bayat, M. and Bayat, M. (2018), "Evaluation of monotonic and cyclic behaviour of geotextile encased stone columns. Structural Engineering and Mechanics, 65(1), 81-89. https://doi.org/10.12989/sem.2018.65.1.081.
  5. Basoz, N.I. and Kiremidjian, A.S. (1998), "Evaluation of bridge damage data from the Loma Prieta and Northridge, California earthquakes", Evaluation of Bridge Damage Data from the Loma Prieta and Northridge, California Earthquakes, 167.
  6. Bayat, M. and Abdollahzadeh, G. (2011a), "On the effect of the near field records on the steel braced frames equipped with energy dissipating devices", Latin Am. J. Solid. Struct., 8(4), 429-443. https://doi.org/10.1590/S1679-78252011000400004
  7. Bayat, M. and Bayat, M. (2014), "Seismic behavior of special moment-resisting frames with energy dissipating devices under near source ground motions", Steel Compos. Struct., 16(5), 533-557. https://doi.org/10.12989/scs.2014.16.5.533.
  8. Bayat, M. and Pakar, I. (2011b), "Application of Hes energy balance method for nonlinear vibration of thin circular sector cylinder", Int. J. Phys. Sci., 6(23), 5564-5570. https://doi.org/10.5897/ijps11.756.
  9. Bayat, M., Ahmadi, H. R., Kia, M. and Cao, M. (2019a), "Probabilistic seismic demand of isolated straight concrete girder highway bridges using fragility functions", Adv. Concrete Constr., 7(3), 183-189. https://doi.org/10.12989/sem.2019.71.1.057.
  10. Bayat, M., Ahmadi, H.R. and Mahdavi, N. (2019b), "Application of power spectral density function for damage diagnosis of bridge piers", Struct. Eng. Mech., 71(1), 57-63. https://doi.org/10.12989/sem.2019.71.1.057.
  11. Bayat, M., Daneshjoo, F. and Nistico, N. (2017), "The effect of different intensity measures and earthquake directions on the seismic assessment of skewed highway bridges", Earthq. Eng. Eng. Vib., 16(1), 165-179. https://doi.org/10.1007/s11803-017-0375-z.
  12. Bayat, M., Kosarieh, A.H. and Javanmard, M. (2021a), "Probabilistic seismic demand analysis of soil nail wall structures using bayesian linear regression approach", Sustain., 13(11), 5782. https://doi.org/10.3390/su13115782.
  13. Bayat, M., Kosarieh, A.H. and Javanmard, M. (2021b), "Nonlinear dynamic analysis of soil nail walls considering different modeling approaches", Steel Compos. Struct., 39(6), 737-750. https://doi.org/10.12989/scs.2021.39.6.737.
  14. Bayat, M., Pakar, I. and Bayat, M. (2013a), "On the large amplitude free vibrations of axially loaded Euler-Bernoulli beams", Steel Compos. Struct., 14(1), 73-83. https://doi.org/10.12989/scs.2013.14.1.073.
  15. Bayat, M., Pakar, I. and Emadi, A. (2013b), "Vibration of electrostatically actuated microbeam by means of homotopy perturbation method", Struct. Eng. Mech., 48(6), 823-831. https://doi.org/10.12989/sem.2013.48.6.823.
  16. Benz, T. (2007), "Small-strain stiffness of soils and its numerical consequences", Univ. Stuttgart, Inst. f. Geotechnik, 5.
  17. Castaldo, P. and Amendola, G. (2021), "Optimal DCFP bearing properties and seismic performance assessment in nondimensional form for isolated bridges", Earthq. Eng. Struct. Dyn., 50(9), 2442-2461. http://doi.org/10.1002/eqe.3454.
  18. Castaldo, P. and Amendola, G. (2021), "Optimal sliding friction coefficients for isolated viaducts and bridges: A comparison study", Struct. Control Health Monit., 28(12), e2838. https://doi.org/10.1002/stc.2838.
  19. Castaldo, P. and De Iuliis, M. (2014), "Effects of deep excavation on seismic vulnerability of existing reinforced concrete framed structures", Soil Dyn. Earthq. Eng., 64, 102-112. https://doi.org/10.1016/j.soildyn.2014.05.005.
  20. Castaldo, P., Gino, D. and Mancini, G. (2019), "Safety formats for non-linear finite element analysis of reinforced concrete structures: Discussion, comparison and proposals", Eng. Struct., 193, 136-153. https://doi.org/10.1016/j.engstruct.2019.05.029.
  21. Celarec, D. and Dolsek, M. (2013), "The impact of modelling uncertainties on the seismic performance assessment of reinforced concrete frame buildings", Eng. Struct., 52, 340-354. https://doi.org/10.1016/j.engstruct.2013.02.036.
  22. Deepu, S.P., Prajapat, K. and Ray-Chaudhuri, S. (2018), "Seismic vulnerability of skew bridges under bidirectional ground motions", Eng. Struct., 71(9), 150-160. https://doi.org/10.1016/j.engstruct.2014.04.013.
  23. Der Kiureghian, A. and Ditlevsen, O. (2009), "Aleatory or epistemic? Does it matter?", Struct. Saf., 31(2), 105-112. https://doi.org/10.1016/j.strusafe.2008.06.020.
  24. FEMA (2003), HAZUS-MH MR1: Technical Manual, Federal Emergency Management Agency Washington, DC, USA.
  25. Gino, D., Castaldo, P., Giordano, L. and Mancini, G. (2021), "Model uncertainty in nonlinear numerical analyses of slender reinforced concrete members", Struct. Concrete, 22(2), 845-870. https://doi.org/10.1002/suco.202000600.
  26. Han, J. and Wu, H.R. (2016), "A new transfer matrix method for curved beams and comparison study", Lab. Res. Expl., 35(12), 18-21.
  27. Holicky, M., Retief, J.V. and Sykora, M. (2016), "Assessment of model uncertainties for structural resistance", Prob. Eng. Mech., 45, 188-197. https://doi.org/10.1016/j.probengmech.2015.09.008.
  28. Janalizadeh Choobbasti, A., Soleimani Kutanaei, S. and Taslimi Paein Afrakoti, M. (2019), "Modeling of compressive strength of cemented sandy soil", J. Adhes. Sci. Tech., 33(8), 791-807. https://doi.org/10.1080/01694243.2018.1548535.
  29. Khorshidi, N., Ansari, M. and Bayat, M. (2014), "An investigation of water magnetization and its influence on some concrete specificities like fluidity and compressive strength", Comput. Concrete, 13(5), 649-657. http://doi.org/10.12989/cac.2014.13.5.649.
  30. Kia, M. and Banazadeh, M. (2016), "Closed-form fragility analysis of the steel moment resisting frames", Steel Compos. Struct., 21(1), 93-107. https://doi.org/10.12989/scs.2016.21.1.093.
  31. Kia, M. and Banazadeh, M. (2017), "Probabilistic seismic hazard analysis using reliability methods", Scientia Iranica, 24(3), 933-941. https://doi.org/10.24200/sci.2017.4077.
  32. Kia, M., Amini, A., Bayat, M. and Ziehl, P. (2021), "Probabilistic seismic demand analysis of structures using reliability approaches", J. Earthq. Tsunami, 15(3), 2150011. https://doi.org/10.1142/S1793431121500111.
  33. Kia, M., Bayat, M., Emadi, A., Kutanaei, S.S. and Ahmadi, H.R. (2022), "Reliability based seismic fragility analysis of bridge", Comput. Concrete, 29(1), 59-67. https://doi.org/10.12989/cac.2022.29.1.059.
  34. Kitayama, S. and Constantinou, M.C. (2018), "Collapse performance of seismically isolated buildings designed by the procedures of ASCE/SEI 7", Eng. Struct., 164, 243-258. http://doi.org/10.1016/j.engstruct.2018.03.008.
  35. Kitayama, S. and Constantinou, M.C. (2019), "Probabilistic seismic performance assessment of seismically isolated buildings designed by the procedures of ASCE/SEI 7 and other enhanced criteria", Eng. Struct., 179, 566-582. http://doi.org/10.1016/j.engstruct.2018.11.014.
  36. Kutanaei, S.S. and Choobbasti, A.J. (2019), "Prediction of liquefaction potential of sandy soil around a submarine pipeline under earthquake loading", J. Pipeline Syst. Eng. Practice, 10(2), 04019002. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000349.
  37. Lu, D.G., Yu, X.H., Pan, F. and Wang, G.Y. (2008), "Probabilistic seismic demand analysis considering random system properties by an improved cloud method", Proceedings of the 14th World Conference on Earthquake Engineering, Beijing, China.
  38. Mashhadban, H., Beitollahi, A. and Kutanaei, S.S. (2016), "Identification of soil properties based on accelerometer records and comparison with other methods", Arab. J. Geosci., 9(6), 427. https://doi.org/10.1007/s12517-016-2452-4.
  39. Mirfakhraei, S.F., Ahmadi, H.R. and Chan, R. (2020), "Numerical and experimental research on actuator forces in toggled active vibration control system (Part I: Numerical)", Smart Struct. Syst., 25(2), 229-240. http://doi.org/10.12989/sss.2020.25.2.229.
  40. Pakar, I. and Bayat, M. (2013), "An analytical study of nonlinear vibrations of buckled Euler Bernoulli beams", Acta Physica Polonica A, 123(1), 25. https://doi.org/10.12693/APhysPolA.123.25
  41. Pakar, I. and Bayat, M. (2013), "Vibration analysis of high nonlinear oscillators using accurate approximate methods", Struct. Eng. Mech., 46(1), 137-151. https://doi.org/10.12989/sem.2013.46.1.137.
  42. Rawlings, C. (2017), "Geotechnical finite element analysis-A practical guide", Proceedings of the Institution of Civil Engineers-Civil Engineering, 170(4), 152-153. https://doi.org/10.1680/jcien.2017.170.4.152
  43. Salahshour, Y. and Ardakani, A. (2018), "Evaluation of piled raft behavior based on the taguchi method subjected to combination of vertical and horizontal loads", J. Eng. Geol., 11(3), 183-204. https://doi.org/10.18869/acadpub.jeg.11.3.183.
  44. Shinozuka, M., Feng, M.Q., Kim, H.K. and Kim, S.H. (2000a), "Nonlinear static procedure for fragility curve development", J. Eng. Mech., 126(12), 1287-1295. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:12(1287).
  45. Shinozuka, M., Feng, M.Q., Lee, J. and Naganuma, T. (2000b), "Statistical analysis of fragility curves", J. Eng. Mech., 126(12), 1224-1231. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:12(1224).
  46. Sumathi, A. and Vignesh, A.S. (2017), "Study on behavior of RCC beams with externally bonded FRP members in flexure", Adv. Concrete Constr., 5(6), 625-638. https://doi.org/10.12989/acc.2017.5.6.625.
  47. Taravati, H. and Ardakani, A. (2018), "The numerical study of seismic behavior of gravity retaining wall built near rock face", Earthq. Struct., 14(2), 179-186. http://doi.org/10.12989/eas.2018.14.2.179.
  48. Tavakoli, H., Kutanaei, S.S. and Hosseini, S.H. (2019), "Assessment of seismic amplification factor of excavation with support system", Earthq. Eng. Eng. Vib., 18(3), 555-566. https://doi.org/10.1007/s11803-019-0521-x.
  49. Xuan, F., Xia, X.H. and Wang, J.H. (2009), "The application of a small strain model in excavations", J. Shanghai Jiaotong University, 14(4), 418-422. https://doi.org/10.1007/s12204-009-0418-3.
  50. Yamazaki, F., Motomura, H., Hamada, T., (2000), "Damage assessment of expressway networks in Japan based on seismic monitoring", Proceedings of the 12th World Conference on Earthquake Engineering.