DOI QR코드

DOI QR Code

A Methodology to Determine Composite Material Allowables and Design Values Using Building Block Approach

빌딩블록 접근법을 이용한 복합재 재료 허용치 및 설계치 설정 방법

  • Received : 2022.01.28
  • Accepted : 2022.04.12
  • Published : 2022.06.01

Abstract

In the design of composite aircraft structures, it is very important to set material allowables and design values, which take into account certification. And when determining the material allowable and design value of composite structures, the static strength, damage tolerance requirements, and environmental effects should be considered. The building block approach has been applied to the civil and military aviation industry for a long time and provides the principal certification methodology. This current certification methodology is based on extensive testing including coupon, element, sub-component, and full scale test. In this paper, some examples of composite allowable tests have been presented and the fundamental background and application methods of the building block approach have been presented.

복합재 항공기 구조물의 설계 시 인증을 고려한 재료 허용치와 설계치의 설정이 매우 중요하다. 그리고 복합재 구조물의 재료 허용치와 설계치의 설정은 정적강도, 손상허용 요구 조건 및 환경효과가 고려되어야 한다. 빌딩블록 접근법은 오랫동안 민간 및 군수 항공 산업에 적용되어 왔으며 중요한 인증 방법론을 제공하였다. 현재의 인증 방법은 시편, 요소, 부구성품 및 전기체 시험을 포함하는 광범위한 실험을 기반으로 한다. 본 논문에서는 복합재 허용치 실험 사례가 제시되며 빌딩 블록 접근 방식의 중요한 배경 및 적용방법이 제시된다.

Keywords

Acknowledgement

본 연구는 국가과학기술연구회에서 지원한 "차세대 항공 모빌리티 안전성 향상 핵심기술연구" 사업 수행 결과의 일부이며, 지원에 감사드립니다.

References

  1. Feraboli, B., "Composite materials strength determination within the current certification methodology for aircraft structures," Journal of Aircraft, Vol. 46, No. 4, 2009, pp. 1365~1374. https://doi.org/10.2514/1.41286
  2. The Composite Materials Handbook-MIL, 17, Vol. 3, Rev. F, Chapter, 4.
  3. FAR Part-25, Airworthiness standards: Transport category airplanes.
  4. Qiao, P. and Shan, L., "Explicit load buckling analysis and design of fiber-reinforced plastic composite structural shapes," Composite Structures, Vol. 70, 2005, pp. 468~483. https://doi.org/10.1016/j.compstruct.2004.09.005
  5. AC 20-107B, Composite aircraft structure, FAA, 2009.
  6. Thuis, H. G. S. J., "The development of a composite landing gear component for a fighter aircraft," NLR-TP-2002-020, 2002.
  7. Kim, S. J. and Hwang, I. H., "Study on through the thickness stresses in the corner radius of a laminated composite structure," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 41, No. 8, 2013, pp. 665~672. https://doi.org/10.5139/JKSAS.2013.41.8.665
  8. Kim, S. J. and Lee, D., "Predicting the compressive strength of thin-walled composite structure," Journal of the Korean Society for Aviation and Aeronautics, Vol. 27, No. 2, 2019, pp. 9~15. https://doi.org/10.12985/KSAA.2019.27.2.009
  9. AC 25.571, Damage tolerance and fatigue evaluation of structure.
  10. Kim, S. J. and Hwang, I. H., "Residual strength analysis for notched composite laminates," Journal of the Korean Society for Aviation and Aeronautics, Vol. 20, No. 1, 2012, pp. 103~111. https://doi.org/10.12985/KSAA.2012.20.1.103
  11. Wang, J. T., PoeJr, C. C., Ambur, D. R. and Sleight, D. W., "Residual strength prediction of damaged composite fuselage panel with R-curve method," Composites Science and Technology, Vol. 66, No. 14, 2006, pp. 2557~2565. https://doi.org/10.1016/j.compscitech.2006.01.011
  12. Aoki, Y., Takeda, S., Shoji, H., Sugimoto, S. and Iwahori, Y., "Evaluation on discrete source damages of CFRP stiffened panels," 28th International Congress of the Aeronautical Sciences, 2012.
  13. MIL-A-8867, Airplane strength and rigidity ground tests.
  14. Kim, S. J. and Park, S., "Compressive strength prediction of composite laminates containing circular holes," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 49, No. 7, 2021, pp. 549~555. https://doi.org/10.5139/JKSAS.2021.49.7.549