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Abstract  

Some surface defects make the weak quality of steel materials. To limit these defects, we advocate a one-

stage detector model RetinaNet among diverse detection algorithms in deep learning. There are several 

backbones in the RetinaNet model. We acknowledged two backbones, which are ResNet50 and VGG19. To 

validate our model, we compared and analyzed several traditional models, one-stage models like YOLO and 

SSD models and two-stage models like Faster-RCNN, EDDN, and Xception models, with simulations based 

on steel individual classes. We also performed the correlation of the time factor between one-stage and two-

stage models. Comparative analysis shows that the proposed model achieves excellent results on the dataset 

of the Northeastern University surface defect detection dataset. We would like to work on different backbones 

to check the efficiency of the model for real world, increasing the datasets through augmentation and focus on 

improving our limitation.  
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1. Introduction 

Detecting a defect in a product or materials is a crucial task as it can change the functionality, effectiveness, 

and quality of the product. If the defects are not analyzed and neglected, they can lead to huge disasters in 

product making and it will affect the industry reputation by deploying the defective material. Defect detection 

is a method that facilitates exploring and diminishing the defects in a product and assisting in the enhancement 

of the quality of the product. The defect detection method is an important step in quality production. The 

approach will help in good quality products, excellent accuracy, customer satisfaction, increase productivity, 

and overall industrial reputation. Defect detection can be persuaded in any sector whether its software industry 

or metal industry or machinery industry. 

Today the steel world industry is growing at a rapid speed. With the increasing demand for steel materials 

and with the fast production of steel the major concern which bothers is the quality of the steel produced. The 

increase in competition between the steel industries as everyone wants to grab the market has led to the 

degradation of steel manufacturing.  
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During the manufacturing of steel is it deteriorated to enormous different defects. Every production company 

requires a good quality of steel for its products. The metal industries require defect detection approaches to 

analyze the issue of the defects occurring on the steel surface and of what type. Manual defect detection has 

been a very tedious task as there can be human eye error possible but the automatic process of machines can 

lead to overcoming this human error. One of the upcoming technologies which can easily administer the 

manual process is Deep learning. Deep learning is a benefit for this industry. Deep learning technology helps 

in resolving the steel defect detection. Various deep learning approaches have been introduced for defect 

detection. Some of the approaches we will be discussing in the coming section. 

Deep learning is a more detailed and deeper sub-field of machine learning, which is a subset of artificial 

intelligence. Deep learning is a mirror-like functioning of the human brain which helps in detecting objects, 

defects, language translation, speech recognition, and many more. It can be both supervised and unsupervised 

depending upon the data availability. For the technique to be supervised an enormous amount of labeled dataset 

is required for training of the model. In the case of unsupervised learning, it happens when there is data scarcity 

and data is unlabeled for the training of the model. Deep learning has revolutionized various sectors because 

of its learning and computing ability. The most popular model used for image recognition, object, and defect 

detection is Convolutional Neural Network. This network settles the concerns of extracting features separately 

first and then doing the detection by combines the feature extraction and detection in a single model. Various 

algorithms come under this neural network. Some algorithms will be used in our model for feature extraction 

and detection. 

In this paper, we have proposed a one-stage defect detector algorithm for the classification and detection of 

defects on steel surfaces. We compared our model with the other architectures to evaluate individual defect 

detection. 

The paper is organized as follows. In section 2 we discussed the related work on traditional and state-of-the-

art methods, followed by the methodology explaining the detection model in section 3. In section 4 experiment 

evaluation is illustrated. Finally, the paper is concluded in the last section. 

 

2. Related Works 

2.1 Traditional Methods 

The traditional methods for image processing are broadly classified into four categories: structural-based 

approach, statistical-based approach, filter-based approach and model-based approach. The structural-based 

approach focuses on the characteristics and the skeleton of an image on spatial domain. The texture elements 

can be single pixels, line segments or regions of gray-scale. The methods included in this approach are for 

edge detection, texture detection etc. In paper [1], they discuss about the edge detection method for fault defect 

of the material. In paper[2] the authors discuss a skeleton-based structural approach for defect detection of the 

textured surface images. In paper[3, 4], the researchers discuss about the morphological method, a structural 

approach for feature extraction by isolating the defects from the background and some using the additional 

backlight technique[5] for defect detection.  The statistical based technique is based on the distribution of 

pixel values on a given image. Various techniques are included from low to high level statistics histograms, 

thresholding, concurrence matrix, local binary pattern(LBP), autocorrelation and others. In paper[6] the 

authors propose two threshold based Otsu method, one is contrast-adjusted and another is contrast-adjusted 

median for defect detection on aluminum surface. One of the well-known statistical methods is gray level co-

occurrence matrix (GLCM). It is a matrix generated at the given offset of an image projecting the co-occurring 
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gray scale values. Through these matrices, it extracts features help for detection. Several researchers in 

papers[7, 8, 9, 10, 11] describes the employment of this method for defect detection. The histogram of oriented 

gradient(HOG), a feature detection method is employed for object detection in image processing field. For 

particular offset of an image, the gradient’s orientation and magnitude benefits in the generation of histograms, 

which further helps in the detecting the defect area. Various studies in papers[4, 8, 12, 13, 14] demonstrated 

the utilization of HOG approach for feature extraction of defects. LBP is an efficient and low cost 

computational operator for defect detection. Each pixels of an image is labeled by thresholding its neighboring 

pixels and compute the result as binary values. Many researchers implemented this approach for defect 

detection applications on distinctive materials[11, 15, 16, 17, 18]. The filter based methods are the initial level 

approaches required for filtering the features detected by various extraction methods with Fourier transform 

[19, 20, 21]. Gabor filters eliminate the drawbacks of Fourier transform but combining the spatial and 

frequency domain[22]. The wavelet transform involves small waves with limited period and differing 

frequency[23].  

Finally, the model-based approaches for defect detection categorized in three, markov random field is a 

combination of structural and statistical knowledge of context[24]. The fractal model describes the similar 

feature of the defects on different scales[25]. The autoregressive model focuses on the pixel linear dependency 

for feature extraction for defect detection[26]. 

In the real world applications the above traditional approaches are quite challenging due to numerous factors 

like noise, illumination, environmental effect etc. due to which the parametric setting are changed frequently 

making it incompatible for real-time function. It further leads to low accuracy and inefficient model 

performance for defect detection.  

 

2.2 Deep Learning Methods 

To overcome the shortcomings of the traditional approach, there are some researchs using deep learning 

methods. The deep learning architecture consists of classification and regression parts in one model. There are 

numerous deep learning models proposed which was depending on the user requirements. The authors of the 

paper[27] introduce a Single Shot Multibox Detector(SDD) with VGG-16 as base model for end-to- end defect 

detection on the steel surface. The hard negative mining method is introduced to reduce imbalance problem. 

The paper [28] discusses about Xception, CNN architecture for defect detection. The model performs two-step 

classification, first is binary classification for the presence of defects and second is multi-label classification 

to identify the category of the defect. The paper fails to demonstrate the localization of the defects. Varied 

CNN architectures pre-trained on COCO and ImageNet dataset like VGG [29], Overfeat network [30], ResNet 

[31] are implemented for steel surface defect detection. Researchers introduce a defect detection system for 

the quality analysis of steel strip and plate surface[32]. In other studie [33], a defect detection network with 

ResNet50 as the base model, multilevel feature fusion to assemble all the features and RPN for region of 

interest is proposed. The model is compared with other deep learning models. The detection accuracy is less 

compared to classification. The use of AlexNet as the base network for transfer learning and a customized 

CNN network for the analysis of defects on steel surface provides decent accuracy[34]. In the paper[35], the 

authors introduce an improvised R-CNN model and feature pyramid network for steel defect detection. And 

thare are various state-of-the-art methods including SSD[36], You Only Look Once V2 (YOLOV2) [37], 

YOLO-V3 [38]. And faster R-CNN [39] also contributed in the steel surface defect detection. 
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3. Methodology 

In this study, we will be using a one-stage detector for detecting defects on the steel surface. This method 

will focus on detecting six defects on the steel surface. But before understanding the architecture of the model 

we will first understand what a one-stage detector is and why it is different from a two-stage detector.  

 

3.1 One-Stage versus Two-Stage Detector 

Deep Learning models have to be classified broadly in two for detecting an object. One-stage object 

detection is a process in which the object is detected and classified in one go. This detector process does not 

require an additional regional proposal stage as it directly does the detection process on the dataset available. 

This process is simple and faster than the two-stage detector. For the time crucial situation this detector works 

the best. The one-stage models are the good preference for real-time applications for their time feature. But 

the main shortcoming of this detector is the inadequate accuracy. Some of the models working on this concept 

are YOLO, YOLOv2, YOLOv3, SSD, RetinaNet[40], and RefineDet. The two-stage object detection process 

works in two stages. In the first stage with the help of the regional proposal stage (region of interest), the 

regions are decided for detection in an input image. In the second stage, the discovered regions are then 

classified with the help of a classification algorithm. This detector contributes desirable accuracy for the 

detection. The fallout of this process is that it is very slow, and makes it difficult to apply on real-time 

applications. The models working on this concept are R-CNN, Fast R-CNN, Faster R-CNN, Mask R-CNN, 

and DenseNet.  

 

3.2 Our Defect Detection Model 

In our defect detection model for real-time applications, we use RetinaNet, which is one of the one-stage 

detectors. We compare the RetinaNet model and with other state-of-the-art detectors in terms of good speed 

and acceptable accuracy. The other state-of-the-art detectors has a simple architecture. In our model, we 

comprise RetinaNet architecture with a backbone network known as Feature Pyramid Network (FPN)[41-43],   

shown in Fig.1. On top of the ResNet model, we use a backbone network. The FPN’s main feature is to compute 

the feature maps through the convolution of an input image. Our RetinaNet architecture consists of two 

subnetworks; one is the classification part which classify objects provided by the FPN. The second one is the 

regression part which sets the boundary of box on the outputs from FPN. 

 

Figure 1. RetinaNet architecture 
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The FPN consists of two pathways; bottom-up and top-down. Both these pathways are connected in a lateral 

connection. The FPN takes as input in arbitrary size, and then produces feature maps with proportional size at 

different levels, because of its fully convolutional nature. The different levels provide the hard features which  

difficult to detect defects. Also we can predict objects and their classes with the output feature maps of FPN. 

And we can classify the defective state of final images with the bounding box and respective class. 

 

4. Experiments 

The experiment is conducted on the NEU dataset, which will be described shortly. We will be considering 

ResNet50 and VGG19 as the backbone for RetinaNet. The following section contains the description of the 

dataset used, the performance analysis of both the backbones on basis of individual defects, the loss graphs of 

both the backbones which include loss, classification loss and, regression loss, comparison of our method with 

the deep learning methods and traditional methods. 

 

4.1 Datasets 

This study will consider the Northeastern University (NEU) surface defect detection dataset [5]. This dataset 

is a collection of defects on hot-rolled steel strip, which consist of six defects, that is, Pitted Surface (PS) 

Inclusion (In), Patches (P), Rolled-in_scale (Rs) and, Crazing (Cr). This dataset includes 300 image samples 

for each defect respectively.  

• Pitted Surface: It is also known as pits, which are small in size but deep. It looks corrosive on the surface 

which can only be removed by scraping. This is formed by the chemical reaction taking place between oxide 

and metal oxide. It compromises the strength of the material as it penetrates deeply.   

• Inclusion: It is a non-metal particle that is present on steel surface which is created because of the 

contamination, chemical and, physical actions performed during the melting and pouring process of the steel. 

It can cause quality issues like hard spots on the surface, loss of strength of the material, affect the flow 

consistency of the material  

• Patches: This defect is blocked out at some part of the steel surface, which makes the tone of the steel 

surface uneven. This happens because of the fault in the pickling process, the oxides are not eliminated 

completely 

• Rolled-in scale: This defect occurs during the rolling process of the metal when a mixture of flaky iron 

oxides also known as mill scale when rolled in the metal. This affects the uniformity of the steel surface and 

the quality deteriorates.  

• Crazing: These defects form cracks on the steel surface due to high tension on the surface. It’s a collection 

of fine cracks. If the stress increases on the surface chances are that the crack will increase and break. This 

affects the strength of the material. 

 

4.2 Performance Evaluation 

We have performed the test on the above dataset considering the two different backbones of RetinaNet. One 

is ResNet50 and the other one is VGG19. We will focus on individual defect detection. Table 1. and Table 2. 
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exhibits the average precision (AP) of individual defects 

 

Table 1. Average precision of individual classes of defects on ResNet50 backbone 

AP ON RESNET50 BACKBONE 

 

PITTED SURFACE 0.835 

INCLUSION 0.557 

PATCHES 0.883 

ROLLED-IN_SCALE 0.438 

CRAZING 0.425 

Table 2. Average precision of individual classes of defects on VGG19 backbone 

AP OF VGG19 BACKBONE 

PITTED SURFACE 0.848 

INCLUSION 0.611 

PATCHES 0.925 

ROLLED-IN_SCALE 0.537 

CRAZING 0.474 

 

4.3 Losses Evaluation 

We have evaluated the loss factor on both the backbones. 

 

4.3.1 Loss Graphs of ResNet50 

The following Figure 2. shows the loss graph, classification loss graph and, regression loss graph of 

ResNet50. The evaluated losses values of classification loss is 0.00026, regression loss is 0.03451 and loss is 

0.03477 respectively. 
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Figure 2. (a) Loss (b) Classification loss (c) Regression loss graphs for  
ResNet50 backbone 

 

 

4.3.2 Loss Graphs of VGG19 

The following Figure 3. shows the loss graph, classification loss graph and, regression loss graph of VGG19. 

The evaluated losses values of classification loss is 0.00070, regression loss is 0.05548 and loss is 0.05619 

respectively. 
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4.4 Comparison of Accuracy with Deep Learning Methods 

We have done a comparison between our method and the state-of-the-art methods which are SSD, Faster-

RCNN, YOLO-V2, YOLO-V3, EDDN and, Xception, The Table 3. shows how our method with both 

ResNet50 and VGG19 backbone performed well for defects like patches, crazing and pitted surface compared 

to the other methods. We knew that our method have good precision for pitted surface defects, patches defects, 

and crazing defects. But our method have same like or low precision for inclusion defects and rolled in scale 

defects. 

 

Table 3. Comparison of average precision with deep learning models  

AVERAGE PRECISION 

DEFECTS 

SSD 
Faster- 

RCNN 

YOLO-

V2 

YOLO-

V3 
EDDN Xception 

Our 

Method 

(ResNet50) 

Our 

Method 

(VGG19) 
PITTED 

SURFACE 
0.839 0.815 0.454 0.239 0.851 0.75 0.835 0.848 

INCLUSION 0.796 0.794 0.592 0.580 0.763 0.50 0.557 0.611 
PATCHES 0.839 0.853 0.774 0.772 0.863 0.67 0.883 0.925 
ROLLED-

IN_SCALE 
0.621 0.545 0.246 0.335 0.581 N/A 0.438 0.537 

CRAZING 0.411 0.374 0.211 0.221 0.417 N/A 0.425 0.474 

 

4.5 Comparison of Accuracy with Traditional Methods 

We have done a comparison between our method and the traditional methods which are HOG and LBP with 

two classifiers Neighbor classifier (NNC) and Support vector machine (SVM). The Table 4. shows our method 

with both ResNet50 and VGG19 backbone outperforms the other traditional models on all defects. We knew 

that our method have good precision for pitted surface defects, inclusion defects, patches defects, rolled in 

scale defects, and crazing defects. Especially, our method classified with 0.848 and 0.925 accuracy for pitted 

surface defects and patches defects. 

Table 4. Comparison of average precision with traditional methods 

DEFECTS HOG+NNC HOG+SVM LBP+NNC LBP+SVM OUR 

METHOD 

(RESNET50) 

OUR 

METHOD 

(VGG19) 

PITTED 

SURFACE 

0.438 0.328 0.446 0.515 0.835 0.848 

INCLUSION 0.576 0.580 0.412 0.378 0.557 0.611 

PATCHES 0.612 0.630 0.538 0.601 0.883 0.925 

ROLLED-

IN_SCALE 

0.358 0.330 0.237 0.330 0.438 0.537 

CRAZING 0.400 0.412 0.321 0.335 0.425 0.474 

 

4.6 Comparison of Time Factor between One-Stage and Two-Stage Detectors 

 In Table 5. we summarized the time factor between the one-stage and two-stage detectors. From the Table 

5. we can analyze that, Firstly the one-stage detectors are faster compared to the two-stage detectors and 

secondly among the one-stage detector, though the YOLO-v2 seems to be fast, RetinaNet is way ahead of 
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accuracy with YOLO-V2 so the time factor of RetinaNet is considerable in real-time application. RetinaNet is 

more efficient, time-saving and, more accurate among the one-stage detectors. 

 

Table 5. Comparison of time between two-stage and one-stage detectors 

  

DETECTOR 

MODELS 

TIME(MS) 

TWO-STAGE 

R-FCN [26] 85 

FASTER-

RCNN 

172 

ONE-STAGE 

YOLO-V2 25 

SSD 125 

YOLO-V3 93.5 

EDDN 118 

RETINANET 73 

 

5. Conclusion 

In this paper, we studied steel defect detection using the RetinaNet model, a one-stage detector. We 

evaluated the average precision of individual classes of defects on the given dataset and generated the losses 

of two backbones, that is, ResNet50 and VGG19. We did a comparative analysis of our work with state-of-

the-art methods and traditional methods. From the analysis, we can observe that in most of the classes of 

defects our work performed better. We also did the comparison between the one-stage and two-stage detectors 

based on time. We also performed the correlation of the time factor between one-stage and two-stage models. 

Comparative analysis shows that the proposed model achieves excellent results on the dataset of the 

Northeastern University surface defect detection dataset. Though there are some limitations like we have only 

considered some defect classes. In the future, we would like to work on different backbones to check the 

efficiency of the model for real world, increase the datasets through augmentation and focus on improving our 

limitation. 
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