DOI QR코드

DOI QR Code

Genetic factors in precocious puberty

  • Shim, Young Suk (Department of Pediatrics, Ajou University Hospital, Ajou University School of Medicine) ;
  • Lee, Hae Sang (Department of Pediatrics, Ajou University Hospital, Ajou University School of Medicine) ;
  • Hwang, Jin Soon (Department of Pediatrics, Ajou University Hospital, Ajou University School of Medicine)
  • 투고 : 2021.04.21
  • 심사 : 2021.10.01
  • 발행 : 2022.04.15

초록

Pubertal onset is known to result from reactivation of the hypothalamic-pituitary-gonadal (HPG) axis, which is controlled by complex interactions of genetic and nongenetic factors. Most cases of precocious puberty (PP) are diagnosed as central PP (CPP), defined as premature activation of the HPG axis. The cause of CPP in most girls is not identifiable and, thus, referred to as idiopathic CPP (ICPP), whereas boys are more likely to have an organic lesion in the brain. ICPP has a genetic background, as supported by studies showing that maternal age at menarche is associated with pubertal timing in their offspring. A gain of expression in the kisspeptin gene (KISS1), gain-of-function mutation in the kisspeptin receptor gene (KISS1R), loss-of-function mutation in makorin ring finger protein 3 (MKRN3), and loss-of-function mutations in the delta-like homolog 1 gene (DLK1) have been associated with ICPP. Other genes, such as gamma-aminobutyric acid receptor subunit alpha-1 (GABRA1), lin-28 homolog B (LIN28B), neuropeptide Y (NPYR), tachykinin 3 (TAC3), and tachykinin receptor 3 (TACR3), have been implicated in the progression of ICPP, although their relationships require elucidation. Environmental and socioeconomic factors may also be correlated with ICPP. In the progression of CPP, epigenetic factors such as DNA methylation, histone posttranslational modifications, and non-coding ribonucleic acids may mediate the relationship between genetic and environmental factors. CPP is correlated with short- and long-term adverse health outcomes, which forms the rationale for research focusing on understanding its genetic and nongenetic factors.

키워드

참고문헌

  1. Remschmidt H. Mental health and psychological illness in adolescence. Dtsch Arztebl Int 2013;110:423-4.
  2. Palmert MR, Boepple PA. Variation in the timing of puberty: clinical spectrum and genetic investigation. J Clin Endocrinol Metab 2001;86:2364-8. https://doi.org/10.1210/jc.86.6.2364
  3. Fergani C, Navarro VM. Expanding the role of tachykinins in the neuroendocrine control of reproduction. Reproduction 2016;153:R1-14. https://doi.org/10.1530/REP-16-0378
  4. Wheeler MD. Physical changes of puberty. Endocrinol Metab Clin North Am 1991;20:1-14. https://doi.org/10.1016/s0889-8529(18)30279-2
  5. Latronico AC, Brito VN, Carel JC. Causes, diagnosis, and treatment of central precocious puberty. Lancet Diabetes Endocrinol 2016;4:265-74. https://doi.org/10.1016/S2213-8587(15)00380-0
  6. Cho GJ, Park HT, Shin JH, Hur JY, Kim YT, Kim SH, et al. Age at menarche in a Korean population: secular trends and influencing factors. Eur J Pediatr 2010;169:89-94. https://doi.org/10.1007/s00431-009-0993-1
  7. Seo MY, Kim SH, Juul A, Park MJ. Trend of menarcheal age among Korean girls. J Korean Med Sci 2020;35:e406. https://doi.org/10.3346/jkms.2020.35.e406
  8. Roelants M, Hauspie R, Hoppenbrouwers K. References for growth and pubertal development from birth to 21 years in Flanders, Belgium. Ann Hum Biol 2009;36:680-94. https://doi.org/10.3109/03014460903049074
  9. Marshall WA, Tanner JM. Variations in pattern of pubertal changes in girls. Arch Dis Child 1969;44:291-303. https://doi.org/10.1136/adc.44.235.291
  10. Semiz S, Kurt F, Kurt DT, Zencir M, Sevinc O. Pubertal development of Turkish children. J Pediatr Endocrinol Metab 2008;21:951-61.
  11. Prentice P, Viner RM. Pubertal timing and adult obesity and cardiometabolic risk in women and men: a systematic review and meta-analysis. Int J Obes (Lond) 2013;37:1036-43. https://doi.org/10.1038/ijo.2012.177
  12. Ritte R, Lukanova A, Tjonneland A, Olsen A, Overvad K, Mesrine S, et al. Height, age at menarche and risk of hormone receptor-positive and -negative breast cancer: a cohort study. Int J Cancer 2013;132:2619-29. https://doi.org/10.1002/ijc.27913
  13. Cance JD, Ennett ST, Morgan-Lopez AA, Foshee VA, Talley AE. Perceived pubertal timing and recent substance use among adolescents: a longitudinal perspective. Addiction 2013;108:1845-54. https://doi.org/10.1111/add.12214
  14. Partsch CJ, Sippell WG. Pathogenesis and epidemiology of precocious puberty. Effects of exogenous oestrogens. Hum Reprod Update 2001;7:292-302. https://doi.org/10.1093/humupd/7.3.292
  15. Carel JC, Leger J. Clinical practice. Precocious puberty. N Engl J Med 2008;358:2366-77. https://doi.org/10.1056/NEJMcp0800459
  16. Yoon JS, So CH, Lee HS, Lim JS, Hwang JS. The prevalence of brain abnormalities in boys with central precocious puberty may be overestimated. PLoS One 2018;13:e0195209. https://doi.org/10.1371/journal.pone.0195209
  17. Bajpai A, Menon PS. Contemporary issues in precocious puberty. Indian J Endocrinol Metab 2011;15 Suppl 3:S172-9.
  18. Leka-Emiri S, Chrousos GP, Kanaka-Gantenbein C. The mystery of puberty initiation: genetics and epigenetics of idiopathic central precocious puberty (ICPP). J Endocrinol Invest 2017;40:789-802. https://doi.org/10.1007/s40618-017-0627-9
  19. Sorensen S, Brix N, Ernst A, Lauridsen LLB, Ramlau-Hansen CH. Maternal age at menarche and pubertal development in sons and daughters: a Nationwide Cohort Study. Hum Reprod 2018;33:2043-50. https://doi.org/10.1093/humrep/dey287
  20. Treloar SA, Martin NG. Age at menarche as a fitness trait: nonadditive genetic variance detected in a large twin sample. Am J Hum Genet 1990;47:137-48.
  21. Bianco SD. A potential mechanism for the sexual dimorphism in the onset of puberty and incidence of idiopathic central precocious puberty in children: sex-specific kisspeptin as an integrator of puberty signals. Front Endocrinol (Lausanne) 2012;3:149. https://doi.org/10.3389/fendo.2012.00149
  22. Clarke H, Dhillo WS, Jayasena CN. Comprehensive review on kisspeptin and its role in reproductive disorders. Endocrinol Metab (Seoul) 2015;30:124-41. https://doi.org/10.3803/EnM.2015.30.2.124
  23. Silveira LG, Noel SD, Silveira-Neto AP, Abreu AP, Brito VN, Santos MG, et al. Mutations of the KISS1 gene in disorders of puberty. J Clin Endocrinol Metab 2010;95:2276-80. https://doi.org/10.1210/jc.2009-2421
  24. Rhie YJ, Lee KH, Eun SH, Choi BM, Chae HW, Kwon AR, et al. Serum kisspeptin levels in Korean girls with central precocious puberty. J Korean Med Sci 2011;26:927-31. https://doi.org/10.3346/jkms.2011.26.7.927
  25. Demirbilek H, Gonc EN, Ozon A, Alikasifoglu A, Kandemir N. Evaluation of serum kisspeptin levels in girls in the diagnosis of central precocious puberty and in the assessment of pubertal suppression. J Pediatr Endocrinol Metab 2012;25:313-6. https://doi.org/10.1515/jpem-2011-0445
  26. Rhie YJ, Lee KH, Ko JM, Lee WJ, Kim JH, Kim HS. KISS1 gene polymorphisms in Korean girls with central precocious puberty. J Korean Med Sci 2014;29:1120-5. https://doi.org/10.3346/jkms.2014.29.8.1120
  27. Shin YL. An update on the genetic causes of central precocious puberty. Ann Pediatr Endocrinol Metab 2016;21:66-9. https://doi.org/10.6065/apem.2016.21.2.66
  28. Leka-Emiri S, Louizou E, Kambouris M, Chrousos G, De Roux N, Kanaka-Gantenbein C. Absence of GPR54 and TACR3 mutations in sporadic cases of idiopathic central precocious puberty. Horm Res Paediatr 2014;81:177-81. https://doi.org/10.1159/000356913
  29. Kotani M, Detheux M, Vandenbogaerde A, Communi D, Vanderwinden JM, Le Poul E, et al. The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J Biol Chem 2001;276:34631-6. https://doi.org/10.1074/jbc.M104847200
  30. Liu X, Lee K, Herbison AE. Kisspeptin excites gonadotropin-releasing hormone neurons through a phospholipase C/calcium-dependent pathway regulating multiple ion channels. Endocrinology 2008;149:4605-14. https://doi.org/10.1210/en.2008-0321
  31. Teles MG, Bianco SD, Brito VN, Trarbach EB, Kuohung W, Xu S, et al. A GPR54-activating mutation in a patient with central precocious puberty. N Engl J Med 2008;358:709-15. https://doi.org/10.1056/NEJMoa073443
  32. Oh YJ, Rhie YJ, Nam HK, Kim HR, Lee KH. Genetic variations of the KISS1R gene in Korean girls with central precocious puberty. J Korean Med Sci 2017;32:108-14. https://doi.org/10.3346/jkms.2017.32.1.108
  33. Jong MT, Carey AH, Caldwell KA, Lau MH, Handel MA, Driscoll DJ, et al. Imprinting of a RING zinc-finger encoding gene in the mouse chromosome region homologous to the Prader-Willi syndrome genetic region. Hum Mol Genet 1999;8:795-803. https://doi.org/10.1093/hmg/8.5.795
  34. Rock KL, Gramm C, Rothstein L, Clark K, Stein R, Dick L, et al. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 1994;78:761-71. https://doi.org/10.1016/s0092-8674(94)90462-6
  35. Yellapragada V, Liu X, Lund C, Kansakoski J, Pulli K, Vuoristo S, et al. MKRN3 interacts with several proteins implicated in puberty timing but does not influence GNRH1 expression. Front Endocrinol (Lausanne) 2019;10:48. https://doi.org/10.3389/fendo.2019.00048
  36. Liu H, Kong X, Chen F. Mkrn3 functions as a novel ubiquitin E3 ligase to inhibit Nptx1 during puberty initiation. Oncotarget 2017;8:85102-9. https://doi.org/10.18632/oncotarget.19347
  37. Abreu AP, Dauber A, Macedo DB, Noel SD, Brito VN, Gill JC, et al. Central precocious puberty caused by mutations in the imprinted gene MKRN3. N Engl J Med 2013;368:2467-75. https://doi.org/10.1056/NEJMoa1302160
  38. Busch AS, Hagen CP, Almstrup K, Juul A. Circulating MKRN3 levels decline during puberty in healthy boys. J Clin Endocrinol Metab 2016;101:2588-93. https://doi.org/10.1210/jc.2016-1488
  39. Jeong HR, Lee HJ, Shim YS, Kang MJ, Yang S, Hwang IT. Serum Makorin ring finger protein 3 values for predicting Central precocious puberty in girls. Gynecol Endocrinol 2019;35:732-6. https://doi.org/10.1080/09513590.2019.1576615
  40. Aycan Z, Savas-Erdeve S, Cetinkaya S, Kurnaz E, Keskin M, Muratoglu Sahin N, et al. Investigation of MKRN3 mutation in patients with familial central precocious puberty. J Clin Res Pediatr Endocrinol 2018;10:223-9. https://doi.org/10.4274/jcrpe.5506
  41. Valadares LP, Meireles CG, De Toledo IP, Santarem de Oliveira R, Goncalves de Castro LC, Abreu AP, et al. MKRN3 mutations in central precocious puberty: a systematic review and meta-analysis. J Endocr Soc 2019;3:979-95. https://doi.org/10.1210/js.2019-00041
  42. Andersson ER, Sandberg R, Lendahl U. Notch signaling: simplicity in design, versatility in function. Development 2011;138:3593-612. https://doi.org/10.1242/dev.063610
  43. Arruga F, Vaisitti T, Deaglio S. The NOTCH pathway and its mutations in mature B cell malignancies. Front Oncol 2018;8:550. https://doi.org/10.3389/fonc.2018.00550
  44. D'Souza B, Meloty-Kapella L, Weinmaster G. Canonical and non-canonical Notch ligands. Curr Top Dev Biol 2010;92:73-129. https://doi.org/10.1016/S0070-2153(10)92003-6
  45. Sanchez-Solana B, Nueda ML, Ruvira MD, Ruiz-Hidalgo MJ, Monsalve EM, Rivero S, et al. The EGF-like proteins DLK1 and DLK2 function as inhibitory non-canonical ligands of NOTCH1 receptor that modulate each other's activities. Biochim Biophys Acta 2011;1813:1153-64. https://doi.org/10.1016/j.bbamcr.2011.03.004
  46. Jensen CH, Meyer M, Schroder HD, Kliem A, Zimmer J, Teisner B. Neurons in the monoaminergic nuclei of the rat and human central nervous system express FA1/dlk. Neuroreport 2001;12:3959-63. https://doi.org/10.1097/00001756-200112210-00021
  47. Villanueva C, Jacquier S, de Roux N. DLK1 is a somato-dendritic protein expressed in hypothalamic arginine-vasopressin and oxytocin neurons. PLoS One 2012;7:e36134. https://doi.org/10.1371/journal.pone.0036134
  48. Biehl MJ, Raetzman LT. Rbpj-κ mediated Notch signaling plays a critical role in development of hypothalamic Kisspeptin neurons. Dev Biol 2015;406:235-46. https://doi.org/10.1016/j.ydbio.2015.08.016
  49. Macedo DB, Kaiser UB. DLK1, Notch signaling and the timing of puberty. Semin Reprod Med 2019;37:174-81. https://doi.org/10.1055/s-0039-3400963
  50. Dauber A, Cunha-Silva M, Macedo DB, Brito VN, Abreu AP, Roberts SA, et al. Paternally inherited DLK1 deletion associated with familial central precocious puberty. J Clin Endocrinol Metab 2017;102:1557-67. https://doi.org/10.1210/jc.2016-3677
  51. Gomes LG, Cunha-Silva M, Crespo RP, Ramos CO, Montenegro LR, Canton A, et al. DLK1 is a novel link between reproduction and metabolism. J Clin Endocrinol Metab 2019;104:2112-20. https://doi.org/10.1210/jc.2018-02010
  52. Lee HS, Kim KH, Hwang JS. Association study of DLK1 in girls with idiopathic central precocious puberty. J Pediatr Endocrinol Metab 2020;8:1045-9.
  53. Terasawa E, Fernandez DL. Neurobiological mechanisms of the onset of puberty in primates. Endocr Rev 2001;22:111-51. https://doi.org/10.1210/er.22.1.111
  54. Plant TM, Barker-Gibb ML. Neurobiological mechanisms of puberty in higher primates. Hum Reprod Update 2004;10:67-77. https://doi.org/10.1093/humupd/dmh001
  55. Keen KL, Burich AJ, Mitsushima D, Kasuya E, Terasawa E. Effects of pulsatile infusion of the GABA(A) receptor blocker bicuculline on the onset of puberty in female rhesus monkeys. Endocrinology 1999;140:5257-66. https://doi.org/10.1210/en.140.11.5257
  56. Ojeda SR, Prevot V, Heger S, Lomniczi A, Dziedzic B, Mungenast A. Gliato-neuron signaling and the neuroendocrine control of female puberty. Ann Med 2003;35:244-55. https://doi.org/10.1080/07853890310005164
  57. Brito VN, Mendonca BB, Guilhoto LM, Freitas KC, Arnhold IJ, Latronico AC. Allelic variants of the gamma-aminobutyric acid-A receptor alpha1-subunit gene (GABRA1) are not associated with idiopathic gonadotropin-dependent precocious puberty in girls with and without electroencephalographic abnormalities. J Clin Endocrinol Metab 2006;91:2432-6. https://doi.org/10.1210/jc.2005-2657
  58. Lee K, Porteous R, Campbell RE, Luscher B, Herbison AE. Knockdown of GABA(A) receptor signaling in GnRH neurons has minimal effects upon fertility. Endocrinology 2010;151:4428-36. https://doi.org/10.1210/en.2010-0314
  59. Viswanathan SR, Daley GQ, Gregory RI. Selective blockade of microRNA processing by Lin28. Science 2008;320:97-100. https://doi.org/10.1126/science.1154040
  60. Perry JR, Stolk L, Franceschini N, Lunetta KL, Zhai G, McArdle PF, et al. Meta-analysis of genome-wide association data identifies two loci influencing age at menarche. Nat Genet 2009;41:648-50. https://doi.org/10.1038/ng.386
  61. Ong KK, Elks CE, Li S, Zhao JH, Luan J, Andersen LB, et al. Genetic variation in LIN28B is associated with the timing of puberty. Nat Genet 2009;41:729-33. https://doi.org/10.1038/ng.382
  62. Ong KK, Elks CE, Wills AK, Wong A, Wareham NJ, Loos RJ, et al. Associations between the pubertal timing-related variant in LIN28B and BMI vary across the life course. J Clin Endocrinol Metab 2011;96:E125-9. https://doi.org/10.1210/jc.2010-0941
  63. Hu Z, Chen R, Cai C. Association of genetic polymorphisms around the LIN28B gene and idiopathic central precocious puberty risks among Chinese girls. Pediatr Res 2016;80:521-5. https://doi.org/10.1038/pr.2016.107
  64. Silveira-Neto AP, Leal LF, Emerman AB, Henderson KD, Piskounova E, Henderson BE, et al. Absence of functional LIN28B mutations in a large cohort of patients with idiopathic central precocious puberty. Horm Res Paediatr 2012;78:144-50. https://doi.org/10.1159/000342212
  65. Terasawa E. Mechanism of pulsatile GnRH release in primates: unresolved questions. Mol Cell Endocrinol 2019;498:110578. https://doi.org/10.1016/j.mce.2019.110578
  66. Pau KY, Berria M, Hess DL, Spies HG. Hypothalamic site-dependent effects of neuropeptide Y on gonadotropin-releasing hormone secretion in rhesus macaques. J Neuroendocrinol 1995;7:63-7. https://doi.org/10.1111/j.1365-2826.1995.tb00668.x
  67. El Majdoubi M, Sahu A, Ramaswamy S, Plant TM. Neuropeptide Y: a hypothalamic brake restraining the onset of puberty in primates. Proc Natl Acad Sci U S A 2000;97:6179-84. https://doi.org/10.1073/pnas.090099697
  68. Michel MC, Beck-Sickinger A, Cox H, Doods HN, Herzog H, Larhammar D, et al. XVI. International Union of Pharmacology recommendations for the nomenclature of neuropeptide Y, peptide YY, and pancreatic polypeptide receptors. Pharmacol Rev 1998;50:143-50.
  69. Balasubramaniam A. Clinical potentials of neuropeptide Y family of hormones. Am J Surg 2002;183:430-4. https://doi.org/10.1016/S0002-9610(02)00803-6
  70. Kim GL, Dhillon SS, Belsham DD. Kisspeptin directly regulates neuropeptide Y synthesis and secretion via the ERK1/2 and p38 mitogen-activated protein kinase signaling pathways in NPY-secreting hypothalamic neurons. Endocrinology 2010;151:5038-47. https://doi.org/10.1210/en.2010-0521
  71. Freitas KC, Ryan G, Brito VN, Tao YX, Costa EM, Mendonca BB, et al. Molecular analysis of the neuropeptide Y1 receptor gene in human idiopathic gonadotropin-dependent precocious puberty and isolated hypogonadotropic hypogonadism. Fertil Steril 2007;87:627-34. https://doi.org/10.1016/j.fertnstert.2006.07.1519
  72. Page NM, Woods RJ, Lowry PJ. A regulatory role for neurokinin B in placental physiology and pre-eclampsia. Regul Pept 2001;98:97-104. https://doi.org/10.1016/S0167-0115(00)00239-1
  73. Hrabovszky E, Ciofi P, Vida B, Horvath MC, Keller E, Caraty A, et al. The kisspeptin system of the human hypothalamus: sexual dimorphism and relationship with gonadotropin-releasing hormone and neurokinin B neurons. Eur J Neurosci 2010;31:1984-98. https://doi.org/10.1111/j.1460-9568.2010.07239.x
  74. Ramaswamy S, Seminara SB, Ali B, Ciofi P, Amin NA, Plant TM. Neurokinin B stimulates GnRH release in the male monkey (Macaca mulatta) and is colocalized with kisspeptin in the arcuate nucleus. Endocrinology 2010;151:4494-503. https://doi.org/10.1210/en.2010-0223
  75. Topaloglu AK, Reimann F, Guclu M, Yalin AS, Kotan LD, Porter KM, et al. TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for Neurokinin B in the central control of reproduction. Nat Genet 2009;41:354-8. https://doi.org/10.1038/ng.306
  76. Teles MG, Silveira LF, Tusset C, Latronico AC. New genetic factors implicated in human GnRH-dependent precocious puberty: the role of kisspeptin system. Mol Cell Endocrinol 2011;346:84-90. https://doi.org/10.1016/j.mce.2011.05.019
  77. Xin X, Zhang J, Chang Y, Wu Y. Association study of TAC3 and TACR3 gene polymorphisms with idiopathic precocious puberty in Chinese girls. J Pediatr Endocrinol Metab 2015;28:65-71. https://doi.org/10.1515/jpem-2013-0460
  78. Euling SY, Herman-Giddens ME, Lee PA, Selevan SG, Juul A, Sorensen TI, et al. Examination of US puberty-timing data from 1940 to 1994 for secular trends: panel findings. Pediatrics 2008;121 Suppl 3:S172-91. https://doi.org/10.1542/peds.2007-1813D
  79. Merzenich H, Boeing H, Wahrendorf J. Dietary fat and sports activity as determinants for age at menarche. Am J Epidemiol 1993;138:217-24. https://doi.org/10.1093/oxfordjournals.aje.a116850
  80. Deng X, Li W, Luo Y, Liu S, Wen Y, Liu Q. Association between small fetuses and puberty timing: a systematic review and meta-analysis. Int J Environ Res Public Health 2017;14:1377. https://doi.org/10.3390/ijerph14111377
  81. Silver HK. Asymmetry, short stature, and variations in sexual development. A syndrome of congenital malformations. Am J Dis Child 1964;107:495-515. https://doi.org/10.1001/archpedi.1964.02080060497011
  82. Kaprio J, Rimpela A, Winter T, Viken RJ, Rimpela M, Rose RJ. Common genetic influences on BMI and age at menarche. Hum Biol 1995;67:739-53.
  83. Bjornsson HT, Fallin MD, Feinberg AP. An integrated epigenetic and genetic approach to common human disease. Trends Genet 2004;20:350-8. https://doi.org/10.1016/j.tig.2004.06.009
  84. Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 2003;349:2042-54. https://doi.org/10.1056/NEJMra023075
  85. Garcia-Bassets I, Kwon YS, Telese F, Prefontaine GG, Hutt KR, Cheng CS, et al. Histone methylation-dependent mechanisms impose ligand dependency for gene activation by nuclear receptors. Cell 2007;128:505-18. https://doi.org/10.1016/j.cell.2006.12.038
  86. McCarthy MM, Auger AP, Bale TL, De Vries GJ, Dunn GA, Forger NG, et al. The epigenetics of sex differences in the brain. J Neurosci 2009;29:12815-23. https://doi.org/10.1523/JNEUROSCI.3331-09.2009
  87. Kelly KF, Daniel JM. POZ for effect--POZ-ZF transcription factors in cancer and development. Trends Cell Biol 2006;16:578-87. https://doi.org/10.1016/j.tcb.2006.09.003
  88. Lomniczi A, Wright H, Ojeda SR. Epigenetic regulation of female puberty. Front Neuroendocrinol 2015;36:90-107. https://doi.org/10.1016/j.yfrne.2014.08.003
  89. Lomniczi A, Loche A, Castellano JM, Ronnekleiv OK, Bosch M, Kaidar G, et al. Epigenetic control of female puberty. Nat Neurosci 2013;16:281-9. https://doi.org/10.1038/nn.3319
  90. Toro CA, Aylwin CF, Lomniczi A. Hypothalamic epigenetics driving female puberty. J Neuroendocrinol 2018;30:e12589. https://doi.org/10.1111/jne.12589
  91. Toro CA, Wright H, Aylwin CF, Ojeda SR, Lomniczi A. Trithorax dependent changes in chromatin landscape at enhancer and promoter regions drive female puberty. Nat Commun 2018;9:57. https://doi.org/10.1038/s41467-017-02512-1
  92. Costa RA, Ferreira IR, Cintra HA, Gomes LHF, Guida LDC. Genotype-phenotype relationships and endocrine findings in Prader-Willi Syndrome. Front Endocrinol (Lausanne) 2019;10:864. https://doi.org/10.3389/fendo.2019.00864
  93. Fanis P, Skordis N, Toumba M, Papaioannou N, Makris A, Kyriakou A, et al. Central precocious puberty caused by novel mutations in the promoter and 5'-UTR region of the imprinted MKRN3 gene. Front Endocrinol (Lausanne) 2019;10:677. https://doi.org/10.3389/fendo.2019.00677
  94. Bessa DS, Maschietto M, Aylwin CF, Canton APM, Brito VN, Macedo DB, et al. Methylome profiling of healthy and central precocious puberty girls. Clin Epigenetics 2018;10:146. https://doi.org/10.1186/s13148-018-0581-1
  95. Urrutia R. KRAB-containing zinc-finger repressor proteins. Genome Biol 2003;4:231. https://doi.org/10.1186/gb-2003-4-10-231
  96. Li X, Ito M, Zhou F, Youngson N, Zuo X, Leder P, et al. A maternalzygotic effect gene, Zfp57, maintains both maternal and paternal imprints. Dev Cell 2008;15:547-57. https://doi.org/10.1016/j.devcel.2008.08.014
  97. Jakobsson J, Cordero MI, Bisaz R, Groner AC, Busskamp V, Bensadoun JC, et al. KAP1-mediated epigenetic repression in the forebrain modulates behavioral vulnerability to stress. Neuron 2008;60:818-31. https://doi.org/10.1016/j.neuron.2008.09.036
  98. Quenneville S, Verde G, Corsinotti A, Kapopoulou A, Jakobsson J, Offner S, et al. In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions. Mol Cell 2011;44:361-72. https://doi.org/10.1016/j.molcel.2011.08.032
  99. Shalev D, Melamed P. The role of the hypothalamus and pituitary epigenomes in central activation of the reproductive axis at puberty. Mol Cell Endocrinol 2020;518:111031. https://doi.org/10.1016/j.mce.2020.111031
  100. Li C, Han T, Li Q, Zhang M, Guo R, Yang Y, et al. MKRN3-mediated ubiquitination of Poly(A)-binding proteins modulates the stability and translation of GNRH1 mRNA in mammalian puberty. Nucleic Acids Res 2021;49:3796-813. https://doi.org/10.1093/nar/gkab155
  101. Seraphim CE, Canton APM, Montenegro L, Piovesan MR, Macedo DB, Cunha M, et al. Genotype-phenotype correlations in central precocious puberty caused by MKRN3 mutations. J Clin Endocrinol Metab 2021;106:1041-50.
  102. Canton APM, Krepischi ACV, Montenegro LR, Costa S, Rosenberg C, Steunou V, et al. Insights from the genetic characterization of central precocious puberty associated with multiple anomalies. Hum Reprod 2021;36:506-18. https://doi.org/10.1093/humrep/deaa306
  103. Varimo T, Iivonen AP, Kansakoski J, Wehkalampi K, Hero M, Vaaralahti K, et al. Familial central precocious puberty: two novel MKRN3 mutations. Pediatr Res 2021;90:431-5. https://doi.org/10.1038/s41390-020-01270-z
  104. Montenegro L, Labarta JI, Piovesan M, Canton APM, Corripio R, Soriano-Guillen L, et al. Novel genetic and biochemical findings of DLK1 in children with central precocious puberty: a Brazilian-Spanish Study. J Clin Endocrinol Metab 2020;105:dgaa461.
  105. Abreu AP, Toro CA, Song YB, Navarro VM, Bosch MA, Eren A, et al. MKRN3 inhibits the reproductive axis through actions in kisspeptin-expressing neurons. J Clin Invest 2020;130:4486-500.
  106. Pagani S, Calcaterra V, Acquafredda G, Montalbano C, Bozzola E, Ferrara P, et al. MKRN3 and KISS1R mutations in precocious and early puberty. Ital J Pediatr 2020;46:39. https://doi.org/10.1186/s13052-020-0808-6
  107. Li D, Wu Y, Cheng J, Liu L, Li X, Chen D, et al. Association of polymorphisms in the kisspeptin/GPR54 pathway genes with risk of early puberty in Chinese girls. J Clin Endocrinol Metab 2020;105:dgz229.
  108. Chen T, Chen L, Wu H, Xie R, Wang F, Chen X, et al. Low frequency of MKRN3 and DLK1 variants in Chinese children with central precocious puberty. Int J Endocrinol 2019;2019:9879367.
  109. Su PY, Xu G, Han AZ, Xu N, Zhang GB, Tao FB. The role of hypothalamus polycomb gene methylation in bisphenol A exposure during pregnancy and premature puberty in female offspring. Zhonghua Yu Fang Yi Xue Za Zhi 2019;53:303-8.
  110. Suzuki E, Shima H, Kagami M, Soneda S, Tanaka T, Yatsuga S, et al. (Epi)genetic defects of MKRN3 are rare in Asian patients with central precocious puberty. Hum Genome Var 2019;6:7. https://doi.org/10.1038/s41439-019-0039-9
  111. Ghaemi N, Ghahraman M, Noroozi Asl S, Vakili R, Fardi Golyan F, Moghbeli M, et al. Novel DNA variation of GPR54 gene in familial central precocious puberty. Ital J Pediatr 2019;45:10. https://doi.org/10.1186/s13052-019-0601-6
  112. Yi BR, Kim HJ, Park HS, Cho YJ, Kim JY, Yee J, et al. Association between MKRN3 and LIN28B polymorphisms and precocious puberty. BMC Genet 2018;19:47. https://doi.org/10.1186/s12863-018-0658-z
  113. Jeong HR, Lee HS, Hwang JS. LHCGR gene analysis in girls with non-classic central precocious puberty. Exp Clin Endocrinol Diabetes 2019;127:234-9. https://doi.org/10.1055/s-0043-125067
  114. Jeong HR, Lee HS, Hwang JS. Makorin ring finger 3 gene analysis in Koreans with familial precocious puberty. J Pediatr Endocrinol Metab 2017;30:1197-201. https://doi.org/10.1515/jpem-2016-0471
  115. Grandone A, Capristo C, Cirillo G, Sasso M, Umano GR, Mariani M, et al. Molecular screening of MKRN3, DLK1, and KCNK9 genes in girls with idiopathic central precocious puberty. Horm Res Paediatr 2017;88:194-200. https://doi.org/10.1159/000477441
  116. Chen YC, Chen LM, Lin HH, Chen BH, Chao MC, Hsiao HP. Association study of LIN28B in girls with precocious puberty. J Pediatr Endocrinol Metab 2017;30:663-7. https://doi.org/10.1515/jpem-2016-0101
  117. Ortiz-Cabrera NV, Riveiro-Alvarez R, Lopez-Martinez M, Perez-Segura P, Aragon-Gomez I, Trujillo-Tiebas MJ, et al. Clinical pathogenic variants in familial and nonfamilial idiopathic central precocious puberty. Horm Res Paediatr 2017;87:88-94. https://doi.org/10.1159/000453262
  118. Simsek E, Demiral M, Ceylaner S, Kirel B. Two frameshift mutations in MKRN3 in Turkish patients with familial central precocious puberty. Horm Res Paediatr 2017;87:405-11. https://doi.org/10.1159/000450923
  119. Dimitrova-Mladenova MS, Stefanova EM, Glushkova M, Todorova AP, Todorov T, Konstantinova MM, et al. Males with paternally inherited MKRN3 mutations may be asymptomatic. J Pediatr 2016;179:263-5. https://doi.org/10.1016/j.jpeds.2016.08.065
  120. Hu Z, Chen R, Cai C. Association of genetic polymorphisms around the LIN28B gene and idiopathic central precocious puberty risks among Chinese girls. Pediatr Res 2016;80:521-5. https://doi.org/10.1038/pr.2016.107